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Chaos in the Hamiltonian mean-field model
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We study the dynamical properties of the canonical ordered phase of the Hamiltonian mean-field (HMF)
model, in which N particles, globally coupled via pairwise attractive interactions, form a rotating cluster. Using
a combination of numerical and analytical arguments, we first show that the largest Lyapunov exponent remains
strictly positive in the infinite-size limit, converging to its asymptotic value with 1/ ln N corrections. We then
elucidate the scaling laws ruling the behavior of this asymptotic value in the critical region separating the ordered,
clustered phase and the disordered phase present at high-energy densities. We also show that the full spectrum of
Lyapunov exponents consists of a bulk component converging to the (zero) value taken by a test oscillator forced
by the mean field, plus subextensive bands of O(ln N ) exponents taking finite values. We finally investigate the
robustness of these results by studying a “2D” extension of the HMF model where each particle is endowed with
4 degrees of freedom, thus allowing the emergence of chaos at the level of a single particle. Altogether, these
results illustrate the subtle effects of global (or long-range) coupling and the importance of the order in which
the infinite-time and infinite-size limits are taken: For an infinite-size HMF system represented by the Vlasov
equation, no chaos is present, while chaos exists and subsists for any finite system size.

DOI: 10.1103/PhysRevE.84.066211 PACS number(s): 05.45.Xt, 05.70.Ln, 05.90.+m

I. INTRODUCTION

In the context of Hamiltonian systems with long-range
interactions, the Hamiltonian mean-field (HMF) model in-
troduced independently in the 1990s by Antoni and Ruffo
[1] and by Kaneko, Konishi, and Inagaki [2] became the
main benchmark for the investigation of thermodynamic and
dynamical properties of nonadditive systems [3,4]. The HMF
model describes an ensemble of N particles moving on a
circle, coupled by pairwise (sinusoidal) attractive interactions.
Each particle can also be seen as a pendulum in a fluctuating
potential, whose amplitude is determined self-consistently
and corresponds to the magnetization [1]. Detailed studies
of the HMF model have revealed unusual properties, such
as ensemble inequivalence (associated with the occurrence
of negative specific heat), long-lived quasistationary states,
and anomalous diffusion [3,4]. Here, we are interested in
the dynamical properties of the standard (microcanonical)
equilibrium phases. Below the critical energy Uc = 3/4, the
HMF system has a finite magnetization (clustered phase),
while above Uc the magnetization vanishes (homogeneous
phase). The two regimes are separated by a second-order
canonical phase transition. Both in the limit U → 0 and U →
∞ the dynamics is integrable: In the former case, all particles
are trapped in the (harmonic) bottom part of the potential well;
in the latter, they move freely along the circle. At intermediate
energies, the (nonlinear) microcanonical dynamics of a finite
system made of N particles is characterized by a spectrum of
Lyapunov exponents (LEs) {λi} with i = 1, . . . ,2N and, due
to the Hamiltonian structure, λi = −λ2N+1−i .

The thermodynamic limit is, however, a rather intriguing
subject. For N → ∞, the mean field is constant and the

evolution of each particle is equivalent to the motion of a
standard pendulum in a constant gravitational field. Accord-
ingly, no chaos but just periodic orbits can be generated.
This straightforward theoretical prediction is consistent with
numerical simulations in the homogeneous phase, where it is
numerically observed [3,5] that the maximal LE λ1 vanishes as
N−1/3 (a result which can be easily explained [3,6] by invoking
arguments developed for products of random matrices [7]). In
contrast, in the clustered phase, some numerical investigations
suggest that λ1 remains finite in the infinite-size limit. These
findings are consistent with a theoretical study by Firpo [8]
based on a Riemannian approach, which predicts finite λ1

values below the transition. However, recently, Manos and
Ruffo [9] claimed that the N−1/3 law in the homogeneous phase
applies also at low energies, specifically for U < 0.2, while in
the range of 0.2 < U < Uc they are unable to decide whether
the maximal LE vanishes or stays finite. Finally, a recent
statistical-mechanical treatment suggests that the Lyapunov
spectrum should always converge to zero, but cannot exclude
the existence of an anomalous subextensive component of
strictly positive LEs [10].

In this paper we revisit this issue of the existence and
nature of chaos in the HMF model. The main part of this
paper is a study of the largest LE which is split into two
parts: (i) the analysis of finite-time LEs of a single oscillator in
the fluctuating potential under the assumption of a negligible
coupling in tangent space; (ii) a careful investigation of the
effect of the tangent-space coupling. The former analysis is
justified by the empirical observation that the first Lyapunov
vector is localized and the fact that the influence of a given
oscillator on the self-consistent mean field, which we call
simply the coupling strength, decreases as 1/N . We conclude
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that the single-oscillator LE (i.e., the mean of finite-time LEs)
cannot be larger than 1/ ln N , but we also observe that its
fluctuations stay finite in the thermodynamic limit. These
results are related to the existence of a homoclinic cycle
connecting the top of the effective potential with itself. The
following analysis of the coupling in tangent space reveals that
even if it is very small it induces a finite increase in the LE,
which is proportional to the fluctuations of the single-oscillator
LE. This phenomenon, which we call “coupling pressure,”
is a manifestation of a strong sensitivity to coupling which
generally arises in ensembles of identical weakly coupled
oscillators. It was first uncovered in two coupled identical
oscillators, where it was shown that the maximum LE increases
with coupling strength ε by an amount of order 1/| ln ε|
[11]. The same effect was later found in higher dimensional
systems [12–15]. In the context of globally coupled systems,
the coupling pressure is so drastic that it survives even
though the coupling strength vanishes in the thermodynamic
limit. We provide a quantitative explanation of the effect,
by mapping the tangent-space evolution onto a stochastic
model of sporadically coupled diffusing particles (see Ref. [16]
for a preliminary discussion). In the HMF model, the effect
of the coupling pressure is particularly important, since it
increases the value of the largest LE from zero to a finite
number; i.e., it induces an instability in a model that would,
otherwise, be nonchaotic. Altogether, we can summarize our
results by stating that the infinite-size and the infinite-time
limits do not commute: Taking first the thermodynamic limit,
the evidence of dynamical instabilities would be lost. An
indirect confirmation of the theoretical approach comes from
the localization of the Lyapunov vector, which is confirmed by
our numerical simulations.

Our investigation of the largest LE in the ordered phase of
the simple HMF model is completed by the study of a number
of related points: First, we numerically study the largest LE
in the vicinity of the critical energy value Uc. We find that
λ1 goes to zero for U → Uc from below and account for the
observed scaling behavior.

Next we address the problem of the shape of the entire
Lyapunov spectrum. We find that several exponents (in
addition to the largest) stay positive, but their number is
nonextensive (i.e., it grows slower than linearly with N ). The
results are consistent with the theory in Ref. [10] where it
was predicted that “with measure one” the spectrum should be
equal to zero.

Finally, we discuss a 2D generalization of the HMF
model [17,18], to test the general validity of our theoretical
and numerical findings. In the 2D model, each oscillator is
composed of four variables and thus can be chaotic without
taking the coupling pressure into account. We find nevertheless
the same size dependence of the largest LE as in the standard
HMF model. We also investigate the full Lyapunov spectrum
in this case and argue to what extent the argument developed
for the standard HMF can be extended here.

This paper is organized as follows: The HMF model is
introduced in Sec. II, together with a careful discussion of
its equilibrium properties. This is necessary to collect proper
information on finite-size effects that is crucial for a correct
development of our theoretical arguments. Section III is
devoted to a critical discussion of the numerical results for
different system sizes and different energy values. There, we

illustrate some of the issues that hindered the interpretation
of the numerical results. Section IV is devoted to a detailed
characterization of the evolution in the tangent space of a
single particle in a self-consistent mean field. In particular, we
introduce a finite-time LE and discuss its dependence on the
energy and the number of particles. The effect of the coupling
is discussed in Sec. V, where we first introduce a simplified
model and test the correctness of our solution. The application
to the HMF model is analyzed in the second part of the section.
The scaling of the largest LE at the transition energy Uc is
derived in Sec. VI and compared with numerics. The structure
of the Lyapunov spectra is analyzed in Sec. VII. In Sec. VIII
we deal with the 2D generalization of the HMF model. A brief
summary of the results and a discussion of open questions are
finally reported in Sec. IX.

II. THE HAMILTONIAN MEAN-FIELD MODEL:
EQUILIBRIUM RESULTS

The HMF model was derived from a one-dimensional self-
gravitating model, by truncating the Fourier expansion of the
gravitational potential to its first term [1]. It consists of N

unit-mass particles that move on a circle under their mutual
attraction. The dynamics of the N particles is ruled by the
Hamiltonian [19]

H = K + V ≡
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − cos(θi − θj )], (1)

where θi and pi denote particle positions (angles) and
momenta. The resulting equations of motion are written

θ̇i = pi, ṗi = 1

N

∑
j

sin(θj − θi) = M sin(φ − θi), (2)

where M is the magnetization and φ the associated phase,
defined by

Meiφ = 1

N

∑
j

eiθj . (3)

M measures the degree of clusterization and plays the role
of an order parameter [20]. Depending on the energy density
U = H/N , the system can show two different thermodynamic
phases, separated by a second-order transition: (i) the clus-
tered, ordered phase, characterized by a finite magnetization
(for U < Uc = 3/4); (ii) the homogeneous phase, charac-
terized by a vanishing magnetization (for U > Uc). In the
following, we limit ourselves to the clustered phase U � Uc

(T � Tc).
All the reported simulations have been performed within

the microcanonical ensemble by implementing symplectic
integration schemes, typically a fourth-order McLahlan-Atela
algorithm [21] with integration time step dt = 0.05 or 0.1.
This choice ensures an energy conservation with a relative
precision of the order of 10−10 to 10−11.

Initial phases and momenta have been typically drawn from
the invariant equilibrium distribution discussed in the next
subsection. We have also occasionally compared the results
with those obtained for different choices of initial conditions,
namely, (i) zero phases and a Gaussian distribution of the
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momenta; (ii) a uniform distribution of the phases and a
Gaussian distribution of the momenta. A transient (typically
5 × 103N time units) has been discarded, before starting the
computation of any equilibrium quantity. Finally the typical
transient time for the evolution in tangent space lies between
4 × 105 and 4 × 106 time units, while the typical integration
time lies between 4 × 106 and 107 time units.

A. Equilibrium distribution of single-oscillator energy

From the point of view of a single oscillator, the evolution
equation in Eq. (2), at finite system sizes, is equivalent to that
of a pendulum in a noisy environment, the noise being the
result of the statistical fluctuations of the magnetization. In the
thermodynamic limit, M and φ are strictly constant and, as a
result, the single-oscillator energy

hi = p2
i

2
+ M[1 − cos(θi − φ)] ≡ ki + vi (4)

is strictly conserved. Notice that, in Eq. (4), the (arbitrary)
zero level of the potential energy vi is shifted by vM = M − 1
in order that the ground-state energy of the single oscillator
is always zero for any value of the magnetization M . This
is the convention adopted throughout the paper [22]. Note
also that the total potential energy is not given by the sum
of the single potential terms, but it is equal to half of it,
namely,

V = 1

2

N∑
i=1

(vi − vM ), (5)

the reason being that each term would otherwise be counted
twice.

The equilibrium distribution of the single-oscillator ener-
gies is

P (h,T ) =
∫ ∞

0
dp

∫ π

0
dθδ

[
h − p2

2
− M(1 − cos θ )

]
×Q(p,θ,T ), (6)

where Q(p,θ,T ) is the Gibbs-Boltzmann distribution

Q(p,θ,T ) = C exp

[
− p2

2T
− M

T
(1 − cos θ )

]
, (7)

with a suitable normalization constant C, the unit Boltzmann
constant, and the temperature T given by Refs. [1,3,4]

U = T

2
+ 1

2
(1 − M2). (8)

As a result, one finds that

P (h,T ) = C√
2M

∫ y0

0

e−h/T

√
y(h/M − y)(2 − y)

dy, (9)

where y0 = h/M if h/M < 2 and y0 = 2 otherwise. The
integrand has two (integrable) square-root singularities at both
ends of the integration interval for all energy values, except for
h = 2M , in which case the singularity is hyperbolic, and this
indicates a logarithmic divergence of the integral. Note that
the divergence lies at the separatrix es of the single-particle
effective Hamiltonian (4). This equilibrium energy distribution

10
-4

10
-2

10
0

 f

10
-6

10
-4

10
-2

NS(f)

(b)

0 1 2 3

h

10
-12

10
-8

10
-4

10
0

P(h,T)

(a)

FIG. 1. (Color online) (a) Equilibrium energy distribution Eq. (9)
for three different values of the internal energy: U = 0.1, U = 0.2,
and U = 0.5 (from bottom to top). The value of T in Eq. (9) is
computed by Eq. (8). Recall the shifted energy axis, Eq. (4), for h.
(b) Power spectrum S(f ), multiplied by the size N , for U = 0.5
and three different system sizes, N = 250 (solid black line), 500
(dotted-dashed red line), and 1000 (dashed green line).

(9) is plotted in Fig. 1(a) for three different energy densities
(U = 0.15, 0.2 and 0.5).

B. Magnetization

In this section we discuss the behavior of the magnetization
in the clustered phase and at the critical energy Uc for finite N .
For large but finite N , the magnetization is affected by statisti-
cal fluctuations and, as a result, the oscillator energies diffuse,
albeit very slowly. Simple statistical arguments suggest that the
absolute value of the magnetization M(t) fluctuates around its
mean-field value with an amplitude that should scale as 1/

√
N .

We numerically checked this conjecture by measuring the
power spectrum S(f ) of the magnetization M(t) for different
system sizes. In Fig. 1(b), we see that most of the power is
concentrated in a broad peak around f = 0.16 (for U = 0.5)
and the peak power scales as 1/N , in agreement with the 1/

√
N

amplitude of the fluctuations. We also verified that the power
contained in the low-frequency peak increases upon increasing
the system size. The peak location should be related to some
characteristic time scale of the dynamics, although we have no
precise hints about its origin.

In contrast, the motion of the global phase is determined
by the oscillators with single-particle energies h larger than
the separatrix energy es [1]. They continue rotating either
clockwise or counterclockwise according to their momentum
p. The slow energy diffusion of individual oscillators implies
that those with low energies wander and can reach h > es,
“randomly” picking the rotation direction, and stay in this
high-energy state for some time until they eventually go back
to the “bounded” state with h < es. The numbers of particles
rotating clockwise and counterclockwise are on average equal
to one another, but, because of statistical fluctuations, the
instantaneous fractions of the populations typically differ by a
quantity of order 1/

√
N . Because of momentum conservation,

the phase φN [23] of the global magnetization exhibits a net
drift with an average angular velocity ω ∼ 1/

√
N [1], which

has also been verified numerically (not shown). Over long time
scales, the sign of the velocity changes since the fluctuations
will invert the predominance of clockwise/counterclockwise
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FIG. 2. (Color online) (a) Mean-square displacement of the
global magnetization phase 	φ2 = 〈[φ(t) − φ(0)]2〉 versus time.
Mean-square displacements have been computed by averaging over
time span of order 1 × 107 with sliding windows of duration
160 000–320 000 for three different system sizes: from top to bottom
N = 1000 (black dots), N = 4000 (red squares), and N = 10000
(green diamonds). (b) Same quantities as in (a) but rescaled to
better highlight the crossover from ballistic to diffusive behavior.
Time has been rescaled by system size, t ′ = t/N , and mean-square
displacements by the rescaled time, 	φ2 → 	φ2/t ′. The dashed lines
mark the linear ballistic growth, and the vertical dot-dashed (blue)
line highlights the beginning of deviations from linear growth at the
rescaled crossover time τdiff/N .

rotating particles. As a consequence, we expect the global
phase to exhibit a crossover from drifting to diffusive motion
over a crossover time scale τdiff . Numerical simulations (see
Fig. 2) clearly show that the crossover time diverges in the
thermodynamic limit as τdiff ∼ N .

Finally, we discuss the equilibrium behavior in proximity
to the critical energy. In the thermodynamic limit, the mag-
netization M obeys the usual mean-field behavior; i.e., M ∼
|U − Uc|1/2 for U < Uc [3,4]. Determining M for finite N is,
however, a delicate problem which requires a careful treatment
of finite-size fluctuations [24–26]. The correct solution can be
found by taking into account the law of large numbers in
the self-consistency equation of the mean-field argument. The
magnetization can be expressed within the canonical ensemble
formulation as

M + δM =
∣∣∣∣ 1

Z

∫ ∞

−∞
dp

∫ 2π

0
dθeiθ e−H/T

∣∣∣∣ , (10)

where H = p2/2 + 1 − M cos θ (here the absolute scale is
chosen for the energy), Z = ∫ ∞

−∞ dp
∫ 2π

0 dθe−H/T , and |·|
denotes the modulus of the complex number. The second
term on the left-hand side represents an unavoidable finite-N
correction that we assume to be on the order of δM ∼
O(M/

√
N ). A straightforward calculation (see also Ref. [1])

leads to the self-consistency equation

M = I1(M/T )

I0(M/T )
− δM, (11)

where In(z) is the first-kind modified Bessel function of order
n. Near the critical point, Eq. (11) can be expanded for small
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FIG. 3. (Color online) Critical scaling of the magnetization M .
(a) Size dependence of the magnetization at the critical point,
M(Uc,N ). (b) Magnetization M(U,N ) as a function of the energy
difference 	U = U − Uc for N = 100, 400, 1000, and 4000 (from
top to bottom). (c) Same data as panel (b) with rescaled axes.

M , yielding

M 
 1

2

M

T

[
1 − 1

8

(
M

T

)2]
− δM. (12)

In the infinite-size limit, δM = 0, and this gives the expected
mean-field result [3,4], M ∼ (Tc − T )1/2 for T < Tc = 1/2.
For finite sizes N , Eq. (12) predicts the following scaling,

M(U,N ) ∼ N−β/νF ((Tc − T )N1/ν), for T < Tc, (13)

with β = 1/2, ν = 2, and a scaling function F (z). Using the
energy-temperature relation (8) [27], we can rewrite Eq. (13)
as

M(U,N ) ∼ N−β/νG((Uc − U )N1/ν), for U < Uc, (14)

with another scaling function G(z). This expression accounts
for the critical decay of the magnetization M(Uc,N ) ∼ N−1/4

found in Fig. 3(a). Equation (14) can be further checked by
rescaling the magnetization M(U,N ) off criticality; plotting
MNβ/ν against (U − Uc)N1/ν , we confirm that the data shown
in Fig. 3(b) collapse reasonably well onto a single curve, G(z)
[Fig. 3(c)]. It is worth noting that the observed finite-size
scaling M(Uc,N ) ∼ N−1/4 for the magnetization was reported
for the first time for the mean-field version of the Ising
and Heisenberg model in Ref. [28]. The obtained value of
the critical exponent ν = 2 is the one found for dissipative
noisy phase oscillators [25], but is different from that of
the Kuramoto model, i.e., deterministic phase oscillators with
random frequencies, ν = 5/2 [26]. The value ν = 2 is also the
one expected from a simple dimensional analysis, ν = νMF dc,
where νMF is the usual correlation-length exponent in the
mean-field limit and dc is the upper critical dimension [29]. In
our case, dc = 4 and νMF = 1/2, which further confirms the
analogy of the HMF model with the mean-field XY Heisenberg
model [1].

III. LYAPUNOV CHARACTERIZATION
OF THE DYNAMICS

In order to characterize the dynamics of the system, we
estimate the LEs by following the dynamical evolution in
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tangent space of a vector v = {δθi,δpi}i=1,...,N of infinitesimal
perturbations,

δθ̇i = δpi,
(15)

δṗi = −M cos(φ − θi)δθi + 1

N

∑
j

cos(θj − θi)δθj ,

and by orthonormalizing the resulting vectors at the proper
times [30]. In order to probe large system sizes up to N = 106,
we have implemented a highly parallelized version of the
Gram-Schmidt algorithm.

Most of the numerical simulations have been performed for
U = 0.7 (which corresponds to a magnetization M ≈ 0.281
and a temperature T ≈ 0.479, measured at N � 105) and U =
0.5 (M ≈ 0.621 and T ≈ 0.386). Both parameter values are
sufficiently away from the critical point Uc as well as from the
zero-temperature limit; otherwise the asymptotic behavior of
the Lyapunov exponent would be masked by severe finite-size
effects (see below).

According to a theoretical argument briefly sketched
in Ref. [16], where we showed that, in globally coupled
dissipative systems, the leading finite-size corrections to the
asymptotic value of the largest LE are polynomial in 1/ ln N ,
we find it convenient to investigate the finite-size dependence
of λ1 by plotting it as a function of 1/ ln N . The data reported in
Fig. 4(a) are indeed consistent with a logarithmic dependence,

λ1 = λ∞ + c

ln N
+ O

(
1

ln2 N

)
, (16)

for large N , especially for U = 0.7 (red squares). Deviations
from the 1/ ln N behavior are visible for small N , but taking
a quadratic correction into account is sufficient to describe
perfectly all system sizes studied [Fig. 4(a), red dashed line].
This quadratic correction is stronger for U = 0.5, which is an
incipient evidence of the convergence problems that arise at
small energies (see below). Because of this slow but significant
size dependence, the extrapolated values of the maximum
LE in the thermodynamic limit are smaller than the typical
values reported in the literature (see, e.g., Ref. [3]), but are
nevertheless clearly different from zero: λ∞ = 0.056(6) at
U = 0.5 and λ∞ = 0.046(3) at U = 0.7, both obtained by
using the quadratic ansatz described above.

As briefly mentioned in the introduction, a number of
numerical studies have reported contradicting conclusions
about the largest LE in the clustered phase: While most
of them claimed, qualitatively, no or weak size dependence
and thus strictly positive asymptotic values of the maximal
LE [3,5], Manos and Ruffo [9] reported a power-law decay
λ ∼ N−1/3, although their simulations were performed for
substantially lower energy densities (U = 0.1). Our own
numerical simulations (not shown) performed at U = 0.1
indeed confirm the power-law decay at least up to N = 106.
In order to shed some light on the possible existence of two
qualitatively different phases, we scanned intermediate energy
levels in the interval U ∈ (0.1,0.5). These simulations (see
below) revealed the presence of strong intermittent behavior,
which make it practically impossible to determine a reliable
value of the LE, in particular for large system sizes. The
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FIG. 4. (Color online) Largest LE λ1 of the HMF model. (a) λ1

versus the system size N for U = 0.5 (black circles) and U = 0.7
(red squares). The dashed lines show the quadratic extrapolations to
the asymptotic values. (b), (c) Time series of the finite-time exponent
λτ for N = 100,400,1000 with U = 0.25 [panel (b), from top to
bottom] and for U = 0.20,0.25,0.30 with N = 400 [panel (c), from
top to bottom]. The laminar and burst states have different values of
the time-averaged LE as shown in Fig. 6(c) below. (d) Time fraction
in the burst state Fburst as a function of the size N for U = 0.25 (black
circles), 0.30 (red squares), and 0.35 (green diamonds).

phenomenon is better illustrated by studying the finite-time
LE:

λτ (t) = 1

τ
ln

‖v(t)‖
‖v(t − τ )‖ , (17)

fixing τ = 2 [31]. Figures 4(b) and 4(c) reveal irregular jumps
of λτ (t) between two clearly different states: (i) a laminar one,
where λτ (t) stays near zero; (ii) bursts, where λτ (t) fluctuates
much more strongly. Upon comparing simulations performed
for different sizes [Fig. 4(b)] and different energy densities
[Fig. 4(c)], we see that the frequency of the bursts grows with
both N and U . This is quantitatively shown in Fig. 4(d).

In order to understand the origin of this intermittent
behavior, we analyze the structure of the (first) Lyapunov
vector. The Lyapunov vector is the quantity associated with
each LE and indicates the direction of the infinitesimal
perturbations growing at the rate of the corresponding LE. It
is defined as a function of the phase-space point and turns out
to be a useful tool to characterize statistical properties of large
dynamical systems [32–34]. Here, it is convenient to introduce
the squared amplitude of the normalized vector components
for each oscillator,

Ai = δθ2
i + δp2

i , (18)
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GINELLI, TAKEUCHI, CHATÉ, POLITI, AND TORCINI PHYSICAL REVIEW E 84, 066211 (2011)

1.2 1.24 1.28
h

0

0.1

0.2

α(h)
(b)

10
0

10
2

10
4

i
10

-6

10
-4

10
-2

α
i

(a) _

FIG. 5. (Color online) Localization of the Lyapunov vector.
(a) αi versus i for N = 4000 (black solid line), N = 10 000 (red
dotted-dashed line), and N = 20 000 (green dashed line) at U = 0.5.
The dotted black line marks a decay as 1/i. (b) Average amplitude
of the vector components as a function of the corresponding single-
oscillator energy, α(h), in a system of N = 105 oscillators at U = 0.5.
The vertical dashed red line marks the single-oscillator separatrix
energy es = 2M .

and to consider its time average 〈Ai〉 (here and in the following,
angular brackets denote time averages), to have a statistically
reliable quantity.

In homogeneous globally coupled systems, any ordering of
the oscillators is equally meaningful, as they are equivalent to
one another. In Fig. 5(a), we plot the amplitude αi = √〈Ai〉
versus its rank (i.e., we arrange the oscillators according to
αi in decreasing order) for N = 4000, 10 000, and 20 000.
Our data show that the Lyapunov vector is approximately
localized as 1/i (as indicated by the dotted black line); that
is, the perturbation is concentrated in a few components.
In Fig. 5(b), the data are organized in a different way. The
oscillators are grouped according to their energy and the per-
turbation amplitude is averaged over all oscillators in the
interval [h,h + dh], to obtain α(h). The results reported in
Fig. 5(b) indicate that the vector component is substantially
larger when the energy of the corresponding oscillator is close
to that of the separatrix.

In order to further clarify the relationship between localiza-
tion and energy, it is instructive to monitor the instantaneous
degree of localization of the Lyapunov vector, by estimating
the inverse participation ratio [35]

Y2 =
∑

i A
2
i( ∑

i Ai

)2 . (19)

By construction, 1/N � Y2 � 1. The larger Y2 is, the more
the vector is localized; Y2 = 1 denotes complete localization
on a single oscillator, while Y2 = 1/N indicates a completely
delocalized vector with equal components.

In Fig. 6(a), we plot the time evolution of the finite-time LE
λτ , of the inverse participation ratio Y2, and of the energy
hM of the oscillator with the largest amplitude Ai in the
Lyapunov vector components. The data refer to a small system
(N = 400) with energy density U = 0.25. The three temporal
traces reveal a strong correlation between the occurrence
of the bursts in the finite-time LE, a stronger localization,
and the closeness of the energy to that of the separatrix. A
more quantitative characterization of the connection between
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FIG. 6. (Color online) Intermittency for U = 0.25 and N = 400.
(a) Time series of the finite-time LE λτ (time window τ = 2), the
instantaneous value Y2 of the inverse participation ratio, and the
energy difference hM − es between the dominating oscillator (the one
with the largest amplitude Ai of the Lyapunov vector component) and
the separatrix. (b) Density plot with respect to hM − es and Y2. The
color code shows the frequency in the logarithmic scale. The black
indicates null density. Two peaks corresponding to the burst and the
nonburst states are clearly visible. (c) Lyapunov exponent λ1 (black
circles) versus N for U = 0.25. The conditioned Lyapunov exponents
(see text) are also shown for the burst state (red triangles) and for the
nonburst state (green diamonds).

the inverse participation ratio and the energy is presented in
Fig. 6(b), where the color code indicates the probability to
observe a given pair of values (Y2,hM − es). Altogether, the
data plotted in Figs. 6(a) and 6(b) confirm the intermittency
between the two distinct states: (i) The laminar state is
characterized by a less fluctuating finite-time LE, a weak
localization of the Lyapunov vector, and single-oscillator
energies far from the separatrix; (ii) the burst state by large
fluctuations of the finite-time LE and a strong localization of
the Lyapunov vector around an oscillator lying very close to
the separatrix.

In Fig. 6(c) we compare the value of the true, time-averaged
LE (circles) with the averages restricted to the bursts (triangles)
and the laminar state (diamonds) for U = 0.25. We see that
upon increasing the system size, the “burst” LE tends to
converge toward the true LE. This reflects the fact that the
laminar state tends to disappear for N → ∞ and the “laminar”
LE remains quite small.

Therefore, we conclude this numerical analysis by noting
that the observed value of the LE depends strongly on
whether there is at least one oscillator whose energy is
sufficiently close to the energy es of the separatrix. If, for
any reason, no oscillator has an energy hi close enough
to es, the laminar contribution dominates. Altogether, our
analysis suggests that a truly asymptotic behavior is observed
only if (on average) at least one oscillator has an energy
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sufficiently close to that of the separatrix. The minimal number
Nm ensuring this condition can be estimated by imposing
NmP (es,T )δh = 1 with a suitable width δh of the energy
window. It grows quickly with decreasing U , since, for low
energies, the energy distribution is approximately exponential,
P (h,T ) ≈ exp(−h/T ) with T ≈ 2U [see Eq. (8)], while the
separatrix energy is practically constant, es = 2M ≈ 2. By
referring to the theoretical expression in Eq. (9) and assuming
δh ≈ 1/

√
N (see the next section for a justification), we

find that Nm ≈ 1013, 105, and 10 for U = 0.1, 0.2, and 0.5,
respectively (these are the energy values considered in Fig. 1).
It is clear that for U = 0.1 there is no hope to reach the
asymptotic regime in numerical simulations with the currently
available machines and, in particular, that the λ1 ∼ N−1/3

scaling found by Manos and Ruffo [9] characterizes only the
laminar state, which is not the asymptotic state of the system.

Although our numerical results strongly support the strictly
positive asymptotic value of the maximal LE, it is not clear
how this behavior is connected to the presence of oscillators in
the vicinity of the separatrix. The following two sections are
devoted to clarifying this point.

IV. SINGLE-OSCILLATOR ANALYSIS

In this section we analyze the behavior of the Lyapunov
exponent and vector, by neglecting the coupling term in the
tangent space [i.e., the sum in Eq. (15)]. This assumption
is tantamount to studying a single oscillator forced by the
field MN (t)eiφN (t), which is generated self-consistently by an
ensemble of N globally coupled oscillators. The evolution is
ruled by the effective Hamiltonian (4) and is thereby described
by the equation

θ̇ = p, ṗ = MN sin(φN − θ ), (20)

which, in the tangent space, becomes

δθ̇ = δp, δṗ = −MN cos(φN − θ )δθ, (21)

with no contribution from the coupling with the other oscil-
lators. As already noted, the two observables MN and φN are
strictly constant in the thermodynamic limit N → ∞. This
means that the corresponding LE is expected to be equal to
that of a standard pendulum, i.e., zero.

In the following, we investigate the size dependence of the
maximum LE of the single forced oscillator, by introducing
an energy-dependent single-particle LE λ0(h). Since a mean-
ingful definition of a LE involves the infinite-time limit, while
energy is conserved only during finite times at finite N , we
introduce sporadic small corrections to prevent the trajectory
from diffusing away from the prefixed energy shell h. This is
achieved by rescaling the kinetic energy, or the particle veloc-
ity, each time the trajectory passes through the point of minimal
potential energy, without adjusting the potential energy.

The numerical results reported in Fig. 7 confirm that the LE
decreases with increasing N as expected, but it also displays
a strong dependence on the energy. The peak is centered
at the energy es of the separatrix. In panel (b) we see that
everywhere except in the peak area, λ0 scales as N−1/3. This
behavior can be understood by invoking known results for
random symplectic matrices, similarly to the maximal LE of
the full system in the homogeneous phase. It is known [7]
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FIG. 7. (Color online) Single-oscillator LE versus the energy of
the single particle, forced by N globally coupled oscillators at U =
0.5. In panel (a) the solid curves correspond to N = 100, 1000, 4000,
and 10 000 (from top to bottom); the three rescaled curves in panel
(b) correspond to N = 1000, 4000, and 10 000. The curves overlap
except in the peak region, or near the separatrix energy. The vertical
dashed lines indicate the energy es of the separatrix. Panel (c) shows a
close-up of the peak at h = es, the LE being scaled by the maximum
value λM of each curve and plotted against rescaled single-particle
energies (crosses, triangles, diamonds, and circles correspond to
N = 100, 1000, 4000, and 10 000, respectively).

that approximating the tangent-space dynamics with a product
of independent symplectic random matrices with zero-mean
disorder of amplitude η gives rise to a positive Lyapunov
exponent which scales as η2/3. In our setup, the statistical
fluctuations of the collective magnetization scale as 1/

√
N and

play the role of the disorder. As a result, η 
 1/
√

N and this
explains the −1/3 scaling clearly seen in Fig. 7(b).

The same argument, however, does not apply to the
oscillator with energy near es, because here the instability
is rather due to the separatrix. This results in a peak in λ0(h)
at the separatrix energy, which does not decay as N−1/3. We
investigate the scaling behavior of its width, by plotting in
Fig. 7(c) the LE normalized by its maximum value λM (for any
given N ) with a rescaled axis (h − es)N1/2. The nice overlap
of the curves obtained at different system sizes shows that the
width decreases as 1/

√
N . This indicates that the anomalous

behavior is exhibited by O(
√

N ) oscillators located within the
range of the separatrix energy. These are consequences of the
O(1/

√
N ) fluctuations of the magnetization.

Finally, in Fig. 8 we plotted λM for different values of N

(see black squares). The data shows that λM scales as 1/ ln N

for large N . This behavior can be understood by introducing
a suitable symbolic dynamics. The main source of uncertainty
(and thus of entropy) is associated to the binary “choice” made
by the oscillator on reaching the top of the potential, between
the option to return to the same side or to pass it. Accordingly,
we expect the metric entropy to be K ≈ ln 2/ts , where ts is the
return time to the saddle [36]. The return time can be estimated
as the time needed to amplify a distance from the saddle, in
the order of the noise amplitude 1/

√
N , to a value of order 1.

Since the separation rate from the saddle is finite in the
thermodynamic limit, the condition reads exp(ts)/

√
N ≈ 1.

Accordingly, ts ≈ ln N and therefore K ≈ 1/ ln N . Since the
metric entropy is generically estimated by the sum of the
positive LEs, which is simply equal to the sole positive LE in
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FIG. 8. (Color online) Comparison between the maximum LE
λM of a single forced oscillator (black squares) at separatrix energy
es and the first LE λ1 of the full HMF model for U = 0.5 (red
circles). The dashed lines highlight the quadratic behavior λ1,λM ∼
b0 + b1/ ln N + b2/(ln N )2 with b0 = 0 for λM. (a) The LEs versus
1/ ln N . (b) The LEs are multiplied by ln N . The absence of the
constant term b0 is confirmed by the linearly arranged symbols
for λM.

our case, we can finally conclude that λM ≈ 1/ ln N , too. This
prediction is confirmed in Fig. 8 with a quadratic correction
for finite N ; i.e., λM ≈ b1/ ln N + b2/(ln N )2 + · · ·. Note that,
in contrast to the first LE λ1 of the full system (red circles in
Fig. 8), λM vanishes in the infinite-size limit as it should (black
squares).

By further comparing the single-oscillator LE λM with the
first LE λ1 of the full system (see red circles in Fig. 8), we
see that such a single-oscillator contribution shows a size
dependence similar to that of the full-system LE. However,
for increasing N there is no evidence that the gap is going
to close. Indeed, Fig. 8(b) shows that λ1 ln N diverges for
N → ∞, suggesting that in the thermodynamic limit the
relevant, nonvanishing contribution to the first LE λ1 arises
from the coupling terms. It is therefore necessary to consider
more carefully the whole evolution equation in tangent space
and the role played in this context by the fluctuations of the
finite-time LE.

A simplified argument can be put forward to infer the
asymptotic behavior of the fluctuations of the finite-time LE
for a forced oscillator near the separatrix energy. Whenever
the oscillator passes near the saddle, its growth rate is always
of order 1, positive or negative, irrespective of the system
size. This implies that the amplitude of the finite-time LE
fluctuations near the separatrix energy should remain positive
in the thermodynamic limit, possibly with logarithmic finite-
size corrections. In the next section, we will analyze these
fluctuations more closely in order to build a simplified model
for the fully coupled tangent space dynamics which will allow
us to establish a finite lower bound for the largest LE.

V. A SIMPLIFIED MODEL
FOR THE COUPLING PRESSURE

In the context of globally coupled dissipative systems, we
recently showed that global coupling may induce an increase
of the first LE with respect to the single-unit exponent [16].
Here, we refine such argument for the HMF context.

The single-oscillator approximation discussed in the pre-
vious section consists of disregarding the contribution of the
coupling term appearing in the second line of Eq. (15). In fact,
as we explain below, this is what happens to the tangent-space
evolution of the full system for most of the time, because
of the localization of the Lyapunov vector (see Fig. 5) and
the 1/N normalization in front of the coupling term. The
Lyapunov vector components then evolve independently. In
particular, the logarithms of the amplitudes (xi = ln

√
Ai)

can be regarded as Brownian particles with a drift velocity
given by the single-particle LE and an effective diffusion
constant that measures the fluctuations of the LE itself. The
analysis carried out in the previous section suggests that the
oscillators should be classified into two groups: (i) a small
fraction which lies close to the separatrix and is characterized
by a LE of order 1/ ln N and nonzero fluctuations of the finite
time LE; (ii) the vast majority, characterized by a LE of order
N−1/3 and vanishing fluctuations. The O(1/

√
N ) fluctuations

of the magnetization then suggest that the population ratio
between the particles close to the separatrix and the remaining
population vanishes in the thermodynamic limit, possibly as
1/

√
N . Moreover, energy diffusion induces (slow) exchanges

between the two families.
We now discuss how the coupling modifies the single-

oscillator evolution. The localization of the Lyapunov vector
indicates that the coupling term [the sum on the right-hand
side of Eq. (15)] is of the order of δθm/N , where m labels
the oscillator where the vector is localized. Therefore, because
of the 1/N factor, the mth oscillator component only weakly
affects the oscillator at stake, δθi , and so does the coupling
term. However, the opposite is true when |δθi | � |δθm|/N
(notice that this is possible, since the various components
evolve independently of each other, and their logarithms
diffuse away). In this latter case, the evolution is dominated
by the coupling and the net result is that such extremely small
components become of the order of the coupling term. In terms
of the logarithmic coordinates xi , the effect of the coupling
can be schematized by a barrier sitting at xmin = xmax − ln N

(where xmax labels the rightmost particle, which is the largest
vector component) that prevents any interparticle distance
from being larger than ln N .

Altogether, we propose a simplified model of two pop-
ulations of “particles,” as sketched in Fig. 9. The particles
in the first group (red in Fig. 9) show the biased Brownian
motion, while those in the other group (blue) stay quiescent.
Each particle evolves independently of the others until it lies
at a distance larger than ln N to the left of the rightmost
particle (where the Lyapunov vector is localized), in which
case it is instantaneously pushed forward by the coupling to
restore the maximal allowed distance (drawn by the gray box
of size ln N in Fig. 9). A precise formalization of the model
requires the following additional ingredients: drift velocities
and diffusion coefficients of the two populations and the
mutual transition rates. For the drift, we assume that both
populations are characterized by a zero velocity (zero LE).
Since our goal is to explain the origin of a strictly positive LE
in the thermodynamic limit, we believe that neither a 1/N1/3

nor a 1/ ln N LE can eventually provide a leading contribution
and thereby set both to be zero. As for the diffusion coefficient
of the Brownian particles, we assume a finite value Ds for
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FIG. 9. (Color online) Schematic representation of the toy model
for the coupling pressure (see text). Pointlike particles sit at the
logarithmic coordinates xi = ln

√
Ai and are either diffusive (red

circles with overarrows) or nondiffusive (blue). Diffusive particles
turn nondiffusive with a rate α1 and nondiffusive ones start to diffuse
with a rate α2 ∼ α1/

√
N , as the corresponding oscillators approach

and leave the separatrix, respectively. The coupling is zero as long
as particles are no farther than ln N from the rightmost particle, but
otherwise acts as a barrier, preventing particles from being farther
than ln N from the rightmost one. The net effect is a drift to the right.

the first population (that corresponding to the finite-time LE
fluctuations of the oscillators in the vicinity of the separatrix).
In contrast, we assume a zero diffusion coefficient for the
second population, as it is negligible for large sizes. As for
the transition rates α1 and α2 from the diffusing to the still
population and vice versa, respectively, on the basis of the
numerical observation and the theoretical argument on the ratio
of the two populations, we assume that the ratio α2/α1 vanishes
in the thermodynamic limit as 1/

√
N . Thus, we are left with

three independent parameters: the diffusion coefficient Ds, the
transition rate from the diffusing to the still population α1, plus
a small parameter α2 of the order of α1/

√
N .

It is convenient to introduce the probability density Pj (x,t)
for a particle of the j th population (j = 1 and 2 referring
to the diffusing and still populations, respectively) to be at
position x. If both populations move with a positive velocity
v, a positive LE spontaneously emerges in the system of
interacting particles. It is convenient to study the problem in
a frame moving with a velocity v, since then one has to look
for a stationary solution. In this frame, the evolution equation
reads,

∂P1

∂t
= v

∂P1

∂x
+ Ds

2

∂2P1

∂x2
− α1P1 + α2P2,

(22)
∂P2

∂t
= v

∂P2

∂x
+ α1P1 − α2P2,

where x ∈ [0,∞], with a reflecting boundary at x = 0.
Equation (22) describes an ensemble of stochastic particles that
move along a tilted plane, which corresponds to the velocity v

of the comoving frame, and have two possible internal states,
one characterized by a finite diffusion Ds and the second
one by a zero diffusion, so that the particles in the second
state simply move toward the reflecting barrier at x = 0. The
diffusive dynamics competes with the time scales set by the
transition rates between the two populations. In particular, if
Ds is finite and α1 and α2 are sufficiently small, particles in
the nondiffusing populations will tend to accumulate in x = 0.
Therefore, we look for a general stationary solution of Eq. (22)
of the form

P1(x) = c1e
−γ x, P2(x) = c0δ(x) + c2e

−γ x, (23)

with some γ > 0 and Dirac’s delta δ(x). The two probability
densities must obey particle conservation∫ ∞

0
[P1(x) + P2(x)]dx = 1 (24)

and the population equilibrium condition

α1

∫ ∞

0
P1(x) dx = α2

∫ ∞

0
P2(x) dx. (25)

Substituting the ansatz (23) into Eq. (22), we obtain the
stationary conditions in the bulk (x �= 0),

0 = −vc1γ + Ds

2
γ 2c1 − α1c1 + α2c2,

(26)
0 = −vc2γ + α1c1 − α2c2,

which yields (for v �= 0)

c2 = c1

(
Dsγ

2v
− 1

)
(27)

and

2γ v2 + [2(α1 + α2) − Dsγ
2]v − Dsα2γ = 0. (28)

This can be solved for v, choosing the physically meaningful
positive solution. By recalling that α2 ∼ α1/

√
N , we can

expand in terms of α2,

v =
{

Ds
2 γ − α1

γ
+ O(α2) if (α1 + α2) < Dsγ

2/2,
Dsγ

2α1−Dsγ 2 α2 − O
(
α2

2

)
if (α1 + α2) > Dsγ

2/2.

(29)

Note that the velocity (i.e., the LE) is strictly positive when
diffusion dominates over the interstate transitions.

From Eqs. (23)–(25) it also follows that

c1 = γ

(
α2/α1

1 + α2/α1

)
∼ γ

α2

α1
, (30)

and together with Eqs. (27) and (29), we find that the coefficient
of Dirac’s delta has a finite amplitude,

c0

2
=

{
1 − O(α2) if (α1 + α2) < Dsγ

2/2,

Dsγ
2

2α1
− O(α2) if (α1 + α2) > Dsγ

2/2.
(31)

We can now determine γ self-consistently. Given that we
have an ensemble of N particles whose rightmost position is
xmax (= ln N ), the integrated probability in the excess region,∫ ∞
xmax

[P1(x) + P2(x)]dx, should be in the order of 1/N . From
Eqs. (23) and (27) we have

e−γ xmax = 2v

Dsc1

d0

N
, (32)

where d0 is a constant of O(1). By substituting Eqs. (29) and
(30) into Eq. (32) and using α2/α1 ∼ 1/

√
N , we obtain, for

small transition rates (α1 < Dsγ
2/2),

e−γ xmax = d̃0

(
1 − 2α1

Dsγ 2

)
1√
N

+ O
(
α2

2

)
, (33)

where d̃0 is another O(1) constant.
In the HMF, the transition rate α1 is the inverse of the

residence time tr of an oscillator near the separatrix energy,
whose width has been shown to scale as 1/

√
N . We now
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compute the scaling behavior of this residence time, analyzing
more closely the dynamics near the energy maximum θ −
φN = π . Consider a particle with energy 2MN and phase-space
coordinates p = 0 and θ = φN + π . By expanding Eq. (4)
around the potential energy maximum, we obtain

h 
 p2

2
+ 2MN − MN

2
(θ − φN − π )2 (34)

and the following equations for the single-particle dynamics:

θ̇ = p, ṗ 
 MN (φN − θ + π ). (35)

We already know from Sec. II B that the global phase φN

exhibits a drift 	φ = φN (t) − φN (0) 
 ωt on time scales
smaller than τdiff ∼ N . By integration, we find that 	θ =
θ (t) − θ (0) ∼ ωt3 which dominates the dynamics of the
single-particle energy for large times, as

	h ∼ 	θ2 ∼ ω2t6. (36)

By finally recalling that ω ∼ 1/
√

N , we can determine the
scaling of the time needed for 	h to grow up to order 1/

√
N :

1

α1
= tr ∼ N1/12, (37)

which is in agreement with numerical results reported in
Fig. 10(a).

As a result, α1 goes to zero algebraically (albeit with a small
exponent) in the thermodynamic limit and this guarantees that
the inequality α1 < Dsγ

2/2 is always satisfied asymptotically.
By further imposing that xmax equals the box width ln N , we
have from Eq. (33)

γ = 1

2
+ O

(
1

ln N

)
. (38)
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FIG. 10. (Color online) (a) Average single-particle residence time
tr near the separatrix versus N for U = 0.5. The residence time
is estimated by measuring the crossing time needed for a particle
to pass from an energy eL to an energy eR or vice versa, where
eL < eR are the two energies corresponding to the half maximum of
the curve λ0(h) reported in Fig. 7. The average is taken over 5 × 105

to 2 × 106 events for each size N . The dashed red line indicates
N 1/12. (b) Single-particle finite-time diffusion D(t) versus time t for
U = 0.5. Dashed (black), dot-dashed (red), and solid (blue) lines
correspond to N = 103, N = 104, and N = 105, respectively. Inset:
Effective diffusion coefficient Ds (see text) as a function of 1/ ln N .
Black circles and red squares correspond to U = 0.5 and U = 0.7,
respectively. The dashed lines mark the linear extrapolation to the
asymptotic value.

By now substituting Eq. (38) into Eq. (29), we finally obtain

v = Ds

4
+ O

(
1

ln N

)
. (39)

In other words, because of the divergence of the residence
time near the separatrix, which induces sustained fluctuations
of the finite-time LE, the asymptotic value of the velocity, or
the (time-averaged) LE, is finite. From the quantitative point
of view, it is important to note that our estimation for the
asymptotic LE

λ∞ = Ds

4
(40)

should be interpreted as a lower bound for the actual LE. In
fact, it has been obtained by assuming the vanishing mean
velocity for both of the populations, as well as the vanishing
fluctuations for the still one. Accordingly, there are reasons to
expect that the contribution to the LE from the coupling term
may be larger than Ds/4.

In order to compare our estimates with the asymptotic val-
ues λ∞ = 0.056(6) (U = 0.5) and λ∞ = 0.046(3) (U = 0.7)
(see Sec. III), we need to estimate the effective diffusion
coefficient Ds for a single forced oscillator lying at the
separatrix energy h = es.

From time series ∼106 time units long, we determine
the mean-square displacement of the integrated Lyapunov
exponent and thereby, after dividing by the elapsed time t , the
finite-time diffusion coefficient D(t) that is shown in Fig. 10(b)
for U = 0.5 and three different numbers N of oscillators
(which contribute to the magnetization). There we notice that,
upon increasing N , D(t) exhibits oscillations of increasing
amplitude and period. This is a manifestation of the presence
of long stretches of positive (negative) local exponents when
the oscillator is located close to the saddle. In fact, the period
is proportional to ts ≈ ln N . On the other hand, the effective
diffusion coefficient Ds should be estimated on a time scale of
the order of the residence time tr close to the separatrix and,
since we have just seen that tr ≈ N1/12, it turns out that in the
thermodynamic limit tr � ts . In the lower-bound spirit of our
estimates, we choose to identify Ds with the minimum of the
finite-time diffusion D(t) in the time interval t ∈ [0,5tr ]. The
results are shown in the inset of Fig. 10(b) for both U = 0.5
and U = 0.7. By varying the number N of forcing oscillators
from 103 to 105 and assuming again 1/ ln N corrections, we
obtain the asymptotic estimates Ds = 0.12 for U = 0.5 and
Ds = 0.08 for U = 0.7. It turns out that there is approximately
a factor two between Ds/4 and λ∞. The main interest of the
formula (39) is, however, that representing a lower bound,
it shows that the largest LE remains strictly positive in the
infinite-size limit.

VI. CRITICAL BEHAVIOR OF THE LARGEST
LYAPUNOV EXPONENT

So far we have shown that, in the ordered phase U < Uc, the
coupling pressure due to oscillators near the separatrix keeps
the largest LE λ1 positive even in the infinite-size limit. This
argument does not hold in the disordered phase U > Uc, where
the magnetization M (and the separatrix) vanish. Instead, as
already mentioned, the largest LE decays to zero as λ ∼ N−1/3.

066211-10



CHAOS IN THE HAMILTONIAN MEAN-FIELD MODEL PHYSICAL REVIEW E 84, 066211 (2011)

0 0.1 0.2

1 / lnN
0

0.1

0.2
λ

1
(U,N)

(a)

10
-3

10
-2

10
-1

| |U-U
c

10
-2

10
-1

λ∞

(b)

10
2

10
3

10
4

N
0.1

0.2

0.3 λ
1
(U

c
,N)

(c)

slope -1/6

slope 1/2

FIG. 11. (Color online) Critical scaling of the largest LE
λ1(U,N ). (a) λ1 as a function of 1/ ln N for different energies
U = 0.70,0.73, and 0.745 from top to bottom. (b) Extrapolated values
of the asymptotic largest LE λ∞ as a function of the distance from
the criticality |U − Uc|. (c) Size dependence of λ1 at the critical point
U = Uc.

An interesting question arises then quite naturally: What
is the behavior of the largest LE in the vicinity of the critical
point Uc? The critical behavior of the largest LE λ may provide
a connection between a dynamic quantity of the full system
and macroscopic thermodynamic properties.

In this section we numerically investigate the critical prop-
erties of the largest LE λ1(U,N ) in the HMF model, providing
a theoretical account for the observed finite-size scaling. We
have already seen that, in the ordered phase, λ1 decreases
logarithmically with increasing system size, toward a strictly
positive asymptotic value λ∞(U ). While approaching the crit-
ical point, however, we find that the logarithmic decay sets in
at larger and larger sizes [Fig. 11(a)] and converges to smaller
values of λ∞(U ). Although large finite-size effects as well as
critical slowing down prevent us from estimating λ∞(U ) near
the critical point, our estimates in Fig. 11(b) suggest that the
largest LE exhibits the same critical scaling as the magnetiza-
tion with respect to the system energy U − Uc, namely,

λ∞(U ) ∼ |U − Uc|1/2, for U < Uc. (41)

In this context Firpo’s Riemannian theory [8] predicted
a different power law λ∞(U ) ∼ |U − Uc|1/6 for U < Uc,
although it was derived under assumptions that are not valid
near the critical point.

At criticality, the logarithmic dependence of λ on N is
replaced by an algebraic decay, λ1(Uc,N ) ∼ N−1/6, toward a
vanishing λ∞ [Fig. 11(c)]. In fact, this behavior can also be
explained by the random matrix argument for the power-law
decay λ1 ∼ N−1/3 in the disordered phase [3,6]. In the latter
case, the disorder of the matrices is due to the statistical
fluctuations of the magnetization, and thus its amplitude η

scales as 1/
√

N and the largest LE λ1 ∼ η2/3 ∼ N−1/3. By
contrast, at the critical point, the disorder is due to the
critical decay of the magnetization η ∼ M(Uc,N ) ∼ N−β/ν

(see Sec. II B), which yields

λ1(Uc,N ) ∼ N−2β/3ν . (42)

By recalling β = 1/2 and ν = 2, this indicates λ(Uc,N ) ∼
N−1/6, in agreement with the numerical observation in
Fig. 11(c).

VII. THE FULL LYAPUNOV SPECTRUM

In this section we study the Lyapunov spectrum of the
HMF model in the ordered phase. This analysis provides a
more detailed characterization of the instability. In particular
it helps to assess the (non)extensivity of the chaotic dynamics.
Given the difficulty of extending the theoretical arguments
in Sec. V beyond the largest LE, we restrict our studies
to a careful numerical analysis. Given the symmetry of the
Lyapunov spectrum in Hamiltonian systems, it is sufficient to
compute the first half.

In Ref. [9] it has been argued that, for U = 0.1, the full
spectrum vanishes roughly as N−1/3. However, the intermittent
behavior observed at low energies [see, e.g., Figs. 4(b)–4(d)]
indicates that the burst state should eventually (for N large
enough) dominate and thus the N−1/3 law eventually breaks
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FIG. 12. (Color online) Full Lyapunov spectrum at U = 0.7. (a) Lyapunov spectrum λi as a function of the rescaled index r ≡ (i − 0.5)/N
for system sizes N = 32,64, . . . ,1024 from top right to bottom left, as indicated by the arrow. Inset: Close-up of the first part, with sizes
N = 2048,4096, . . . ,16 384 added. (b) λi versus N at fixed rescaled indices r = 0.2,0.4,0.6, and 0.8 (from top to bottom). The dashed lines
indicate λi ∼ 1/

√
N . (c) a(N)(r ′), as defined in Eq. (45), plotted as a function of the logarithmically rescaled index r ′ = (i − 1)/ ln N for

N = 1024,2048, . . . ,16 384. They show reasonable behavior toward the convergence, implying the logarithmic size dependence (44) for these
subextensive LEs (see text).
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down. Given this difficulty of dealing with low energy values,
we focus here on a larger energy value, namely U = 0.7.

Figure 12(a) shows the Lyapunov spectra λi as functions
of the rescaled index r ≡ (i − 0.5)/N for different system
sizes N . This suggests that the spectrum is composed of two
parts: the bulk of the spectrum which decays toward zero for
increasing N , and the initial part pinned close to the largest
LE, which is clearly visible in the inset of Fig. 12(a).

This scenario is actually coherent with the coexistence
of extensive and subextensive chaos, recently discovered in
generic globally coupled dissipative systems [16]. In such
systems, the Lyapunov spectrum is found to be asymptotically
flat (a specific realization of extensivity) but sandwiched
between two vanishing fractions of exponents located at
both ends of the spectrum, where different asymptotic values
appear. Finite-size analysis then revealed that the bulk of the
spectrum scales as

λi 
 λ0 + c(r)√
N

, (43)

where the asymptotic value λ0 corresponds to the LE of a
single dynamic unit forced by the mean field [16].

In Fig. 12(b), one can appreciate that the spectrum of the
HMF decays as predicted by Eq. (43) with λ0 = 0, since a
single oscillator has only two variables and thus cannot be
chaotic. Notice that the existence of these zero-Lyapunov bulk
components is consistent also with the theoretical prediction
of Ref. [10], which did not exclude the presence of a vanishing
(subextensive) fraction of different exponents. As for the
power-law decay of the bulk exponents, the data for small r

values in Fig. 12(b) seem to decrease more slowly than 1/
√

N ,
but this is presumably due to strong finite-size corrections
induced by the bending near the beginning of the spectrum.

Concerning the subextensive LEs, in dissipative systems it
was found that there are O(ln N ) exponents whose values
vary as λ(i) 
 λ∞ + a(r ′)/ ln N + O(ln2 N ) with λ∞ �= λ0

independent of r ′, when one fixes a logarithmically rescaled
index r ′ ≡ (i − 1)/(i0 + ln N ) with a constant i0 [16]. In
the HMF, we have shown both numerical (Fig. 4) and
theoretical (Sec. V) evidence of this logarithmic depen-
dence for the largest LE, λ1 
 λ∞ + a(0)/ ln N + b(0)/ ln2 N ,
with λ∞ = 0.046(3) for U = 0.7. Now, we assume that the
same size dependence holds for subsequent LEs like in
dissipative systems, with varying coefficients except for the
constant term:

λi 
 λ∞ + a(r ′)/ ln N + b(r ′)/ ln2 N. (44)

To examine the validity of this expression, we take the Lya-
punov spectra λ(N)(r ′) ≡ λ

(N)
i at system size N and compute

a(N)(r ′) ≡ 	λ(2N)(r ′) ln2 2N − 	λ(N)(r ′) ln2 N

ln 2
, (45)

with 	λ(N)(r ′) ≡ λ(N)(r ′) − λ∞. If Eq. (44) holds, the defini-
tion in Eq. (45) gives a(N)(r ′) 
 a(r ′) and the size-dependence
vanishes. Figure 12(c) tests this idea and indeed verifies that
a(N)(r ′) approaches an asymptotic curve for large sizes N with
the logarithmically rescaled index r ′ = (i − 1)/ ln N (here i0 is
set to be zero). Therefore, the logarithmic size dependence (44)
holds for these subextensive exponents, similarly to dissipative

systems. Although we need to study larger systems to obtain a
firmer numerical support, our results on the full spectrum of the
HMF model are consistent with the coexistence of extensive
and subextensive exponents, previously found for dissipative
systems.

VIII. THE GENERALIZED HMF MODEL

In order to study the generality of our results, we finally turn
our attention to a two-dimensional variant of the HMF model,
introduced by Antoni and Torcini [18] and later generalized
[3,17] to the present form. It is defined by the Hamiltonian

H =
N∑

i=1

p2
x,i + p2

y,i

2
+ 1

2N

N∑
i,j=1

{[1 − cos(xi − xj )]

+ [1 − cos(yi − yj )]

+A[1 − cos(xi − xj ) cos(yi − yj )]}, (46)

with two-dimensional coordinates (xi,yi), their conjugate
momenta (px,i ,py,i), and a coupling constant A. The equations
of motion can be written as

ẋi = px,i , ẏi = py,i ,

ṗx,i = −Mx sin(xi − φx) − A

2
[P+ sin(xi + yi − ψ+)

+P− sin(xi − yi − ψ−)], (47)

ṗy,i = −My sin(yi − φy) − A

2
[P+ sin(xi + yi − ψ+)

−P− sin(xi − yi − ψ−)],

with four mean-field terms defined as

Mze
iφz ≡ 1

N

N∑
i=1

eizi , z = {x,y};
(48)

P±eiψ± ≡ 1

N

N∑
i=1

ei(xi±yi ).

As a matter of fact, because of the symmetries of the model,
on average Mx ∼ My ∼ M and P+ ∼ P− ∼ P and the model
can be described in terms of two order parameters only. The
single-oscillator energy can then be written as

hi = p2
x,i + p2

y,i

2
+ 2 + A − M[cos(xi − φx) + cos(yi − φy)]

− AP

2
[cos(xi + yi − ψ+) + cos(xi − yi − ψ−)] (49)

(note that in this section we have not fixed the ground-state
energy at zero).

This generalized HMF model is known for its rich and
generic behavior within the class of systems with long-range
interactions [3,17,18]. For A = 0 it reduces to the standard
HMF model Eq. (1). More generally, while the standard HMF
model shows a continuous transition from the homogeneous
to the ferromagnetic, single-cluster phase, the generalized
HMF model can exhibit both continuous and discontinuous
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FIG. 13. (Color online) Phase diagram of the generalized HMF
model. The shaded area denotes the region where microcanonical
and canonical ensembles differ from one another (i.e., the coex-
istence region of two different thermodynamic phases) occurring
in correspondence of discontinuous canonical transitions. Solid and
dashed lines correspond to continuous and discontinuous transitions,
respectively, within the canonical ensemble. The red dots indicate the
three parameter values we have studied.

canonical transitions depending on the value of A, as shown
in its phase diagram (Fig. 13). Moreover, there exists another
ordered phase, called hereafter the double-cluster phase, which
is composed of two clusters of oscillators separated on average
by π both in xi and yi , and thus characterized by finite values
of P and a vanishing magnetization M . On the microscopic
side, the essential difference with the standard HMF model
is that here a single oscillator has four variables, and hence
can be chaotic in the absence of any coupling with either an
external field or other oscillators. The largest LE of the full
system is therefore not purely determined by the coupling
effect, unlike in the standard HMF model, but receives also a
contribution from the local dynamics, which depends on the
single-oscillator energy.

Figure 14(a) shows the largest LE λ1 measured for three
different sets of parameter values: A = 0.2, U = 1.4 (point
P1 in Fig. 13), in the single-cluster phase, close to a
(canonical) continuous transition [black circles in Fig. 14(a)];
A = 1.0, U = 1.5 (point P2), in the single-cluster phase, close
to a (canonical) discontinuous transition (green diamonds);
and A = 6.0, U = 5.0 (point P3), in the double-cluster phase
(red squares). In all three cases, the largest LE shows the
1/ ln N scaling toward nonzero asymptotic values, similarly
to the standard HMF model. From the figure, one notices that
in proximity to continuous transitions λ1 decreases with N ,
while at P2, in proximity to the discontinuous transition, the
maximal LE increases with the system size. This peculiarity
deserves further investigations.

Analogously to the 1D case, it is instructive to start
comparing with the behavior of a single oscillator forced by
constant order parameters. At variance with the 1D case, the
resulting value of the LE can be positive here and depends on
the energy. When one compares the extrapolated asymptotic
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FIG. 14. (Color online) Lyapunov exponents in the generalized
HMF model. (a) Largest LE of the full system, λ1 versus 1/ ln N

for A = 0.2, U = 1.4 (black circles); A = 1.0, U = 1.5 (green
diamonds); and A = 6.0, U = 5.0 (red squares). The dashed lines in-
dicate linear fits to the scaling regime. (b) Full spectrum λi versus r =
(i − 0.5)/N with N = 32,64,128,256, and 512 (from top to bottom)
for A = 1.0, U = 1.5. Inset: λi versus N for fixed rescaled indices
r = 0.5,1.0,1.5 from top to bottom. (c) Distribution of the single-
oscillator energy h for A = 1.0, U = 1.5 and systems of size N =
40,100,400,1000, 10 000. The arrow indicates increasing system
size. In the inset: Energy-dependent single-oscillator LE for the same
oscillator numbers N . The vertical dashed line marks the position of
the mean-field saddle energy eS = 2 + A(P + 1), with the numerical
estimate P = 0.469(1). (d) The LE λ̄0 of a single oscillator forced by
the full system of size N for A = 1.0, U = 1.5. The red dashed and
green solid lines show the results of a quadratic and a linear fitting,
respectively, which result in finite asymptotic values of λ̄0.

values λ∞ of the full-system LE with the maximum value
of the single-oscillator LE, λM, over possible energy values,
we obtain λ∞ = 0.16 and λM = 0.11 at P1, λ∞ = 0.38 and
λM = 0.27 at P2, and λ∞ = 0.23 and λM = 0 at P3; the first
asymptotic LE of the full system is systematically larger than
λM. This is again a manifestation of the coupling pressure
discussed in Sec. V. For the first two cases, because of the
chaotic dynamics of the single oscillator, one does not need
to introduce the two-family approach taken for the standard
HMF model, but it is more meaningful to refer to the treatment
developed in Ref. [16] for dissipative systems, which predicts

λ∞ = λ̄0 + D

2
, (50)

where D is the diffusion coefficient for the fluctuations of the
single-oscillator finite-time LE and λ̄0 is the single-oscillator
LE with an appropriate averaging over energy values. By
taking into account this correction and using λM instead of
λ̄0 for the sake of simplicity, we find λ∞ ≈ 0.18 (D = 0.15)
at P1, and λ∞ ≈ 0.33 (D = 0.12) at P2. The new values
are much closer to the extrapolated ones, although there is
still a remaining gap (especially in the second case), which
is presumably due to the fact that Eq. (50) was derived

066211-13
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under the assumption of short-ranged time correlations. The
slow diffusion across different energy surfaces makes this
assumption at least questionable. In contrast to these cases
for the single-cluster phase, the situation in the double-cluster
phase is rather analogous to the standard HMF model; because
M = 0 in the infinite-size limit, the equations of motion in this
limit reduce to

ṗx,i ± ṗy,i 
 −AP sin(xi ± yi − ψ±), (51)

which are equivalent to two uncoupled standard HMF models
Eq. (2). However, our theoretical approch in Sec. V should
not be applied directly to this case, because it deals with finite
sizes, where the two variables in Eq. (51) are coupled in a
nontrivial manner.

We also studied the full Lyapunov spectrum λi of the
generalized HMF model. The results shown in Fig. 14(b) are
obtained at P2. They indicate that the full spectrum becomes
flatter and flatter for larger sizes, with an apparent power-law
decay of λi with fixed rescaled index r (inset). While the
convergence toward zero was expected in the 1D case, this
behavior is questionable for the 2D model since in this case
the single oscillator may be chaotic in the presence of a
constant magnetization. In fact, it is reasonable to expect that,
analogously to the dissipative mean-field models discussed in
Ref. [16], the exponents in the bulk of the spectrum converge
to the value of the LE of a single forced oscillator without
coupling in tangent space. However in a Hamiltonian model
such as the 2D HMF, it is not clear which exponent one should
refer to, as it depends on the energy and, moreover, the phase
space is filled with stable islands. Direct measurement of
the energy of a single oscillator in the full system of size
N indicates that, within sufficiently long time scales, the
single-oscillator energy diffuses as largely irrespective of N

[Fig. 14(c)]. Given this existence of a well-defined distribution
function ρ(h) for the single-oscillator energy, an appropriate
reference value λ̄0 for the single-oscillator LE would be
simply the exponent averaged with this distribution function,
namely,

λ̄0 =
∫

dhρ(h)λ0(h), (52)

where λ0(h) is the energy-dependent single-oscillator LE.
The data reported in the inset of Fig. 14(c) indicate that
in the thermodynamic limit λ0(h) vanishes for h < eS =
2 + A(P + 1) (eS being the single oscillator saddle energy in
the mean-field limit), while finite contributions arise for larger
energy values. At finite N , λ̄0 is nothing but the conventional
time-averaged LE of a single forced oscillator and is reported in
Fig. 14(d). This substantially decreases with increasing N and,
in particular, in the infinite-size limit, it can reach a positive
but quite small value of the order of 10−3 [estimated by a
linear fit in Fig. 14(d)]. This indicates that the decreasing
bulk exponents reported in the inset of Fig. 14(b) can have
such a small but positive asymptotic value, which is however
indistinguishable from zero from the available numerical data.
Moreover, one should notice that each oscillator has two
nonnegative LEs; the first one can be positive or zero as already
discussed, while the second one is always zero because of
the continuous time. It implies that one may even expect the
occurrence of two bands in the asymptotic bulk spectrum, in

correspondence with these two single-oscillator LEs. Further
studies are necessary to clarify these issues, to elucidate the
generality of the extensivity and subextensivity found for the
standard HMF model.

IX. CONCLUSIONS AND OPEN PROBLEMS

The question of whether the largest LE in the HMF model
remains positive or converges to zero in the thermodynamic
limit has remained unsettled for a long time. We have shown
here that the largest LE is indeed positive by making use
of several subtle properties of globally coupled systems. The
first ingredient is what we call the “coupling pressure” which
induces a finite increase in the largest LE (with respect to the
LE of a single oscillator forced by the mean field). Coupling
pressure is a general phenomenon that occurs in globally
coupled models of both dissipative and conservative dynamical
systems and arises from the fluctuations of single-oscillator
finite-time LEs. However, the 1D HMF dynamics is even
more subtle, since the LE of the single oscillator under a
constant field is strictly zero, and its relevant fluctuations must
be computed by referring to a special type of trajectory that
comes close to the separatrix. More “natural” is the behavior
of the 2D HMF, since the single oscillator dynamics is chaotic
and thus the overall scenario is analogous to that of standard
dissipative chaotic systems (see Ref. [16]). Altogether, our
results indicate that the thermodynamic limit is rather singular.
If one first takes the limit N → ∞, no fluctuations can be
expected and no signature of chaos detected. On the other
hand, we have shown that the largest LE of an arbitrarily large
system is always positive. This means that representations of
the dynamics such as that built in the Vlasov equation (which
corresponds to assuming N = ∞) lose the chaoticity of the
original dynamics captured by the largest LE.

On a more quantitative level, we have been able to derive
an explicit expression for a lower bound of the largest LE. It
would be interesting to improve the argument to determine a
more accurate estimate and possibly predict the dependence on
the energy (or, equivalently, the temperature). Our numerical
analysis indicates that the largest LE stays indeed positive in
the ordered phase. Possibly, it can remain positive in the limit
U → 0, but a purely numerical approach is out of question
because one would need to simulate large enough systems
to guarantee the presence of some oscillators near the saddle
of the corresponding potential. Near U = 0, the probability
for an oscillator to come close to the separatrix goes to zero
exponentially, and thus simulations are utterly unfeasible.

Although we have not been able to extend the theoretical
arguments beyond the largest exponent, we have undertaken
also a general investigation of the entire Lyapunov spectrum
to investigate the extensivity of the chaotic dynamics. Our
numerical analysis suggests that the asymptotic number of
unstable directions is not extensive (it grows probably like
ln N ). It would be desirable to develop some even approximate
argument to justify this scaling behavior, which is, so far, only
based on numerical simulations.

Finally, we have also analyzed the Lyapunov spectrum for
the 2D HMF. Such a system is less pathologic than the 1D
model, since the single-oscillator dynamics is chaotic and
it is therefore obvious to expect positive LEs. However, a
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problem remains to be settled regarding the scaling behavior
of the full spectrum. On the basis of all arguments developed
here and in Ref. [16], we would expect that the bulk of the
Lyapunov spectrum (at least for r < 1) converges to a finite
value. However this is not yet seen in our simulations. We
cannot exclude that this is because the finite value associated
to the single-oscillator dynamics is really small.

All in all, the results presented here need to be put on firmer
ground by more rigorous mathematical approaches, especially
since we have shown that strong finite-size effects are at play.

The open questions mentioned above also require further work.
It is our hope that the rather subtle phenomena uncovered here
will attract such needed attention in the future.
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