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Abstract. The power spectrum of interface fluctuations in the (1 + 1)-dimensional

Kardar-Parisi-Zhang (KPZ) universality class is studied both experimentally and

numerically. The 1/fα-type spectrum is found and characterized through a set of

“critical exponents” for the power spectrum. The recently formulated “aging Wiener-

Khinchin theorem” accounts for the observed exponents. Interestingly, the 1/fα

spectrum in the KPZ class turns out to contain information on a universal distribution

function characterizing the asymptotic state of the KPZ interfaces, namely the Baik-

Rains universal variance. It is indeed observed in the presented data, both experimental

and numerical, and for both circular and flat interfaces, in the long time limit.
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1. Introduction

The power spectrum‡

S(ω;T ) =
1

T

∣∣∣∣∫ T

0

X(t)e−iωtdt

∣∣∣∣2 (1)

is a useful tool to characterize fluctuating signals X(t) in general. Curiously, there have

been reported a vast variety of systems showing a power law in S(ω) at low frequencies,

S(ω) ∼ 1/ωα (0 < α < 2) (2)

ranging from solid-state physics (vacuum tubes, semiconductors, etc.) [1–3] to fluid

mechanics (e.g., turbulence), life science (e.g., heart beats) and other branches of

science and technology [3, 4]. While the generic term “1/f noise” or more generically

“1/fα noise” was coined to this phenomenon, various underlying mechanisms have been

proposed in the literature.

Theoretical approaches to the 1/fα noise can be classified, roughly, into those based

on stationary processes and on non-stationary, or aging ones. Here the stationarity

indicates that the correlation function, defined with the ensemble average

C(τ ; t) = 〈X(t+ τ)X(t)〉, (3)

‡ In this paper, parameters of a function may be specified after its arguments, separated by a semicolon.

These parameters may be dropped for simplicity.
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does not depend on t. In this case the power spectrum S(ω;T ) is a function of ω

solely, and becomes simply the Fourier transform of C(τ), thanks to the celebrated

Wiener-Khinchin theorem [5]. Since this simplifies analysis, and also because other

kinds of noise such as Johnson-Nyquist noise and shot noise [6] have been successfully

described under the assumption of stationarity, the same assumption has also been

often adopted in models of 1/fα noise for solid-state systems [1, 2]. On the other side,

recent experiments have shown examples of 1/fα noise in intermittent systems, such

as blinking quantum dots [7–10] and nanoscale electrodes [11], which were shown to be

non-stationary, or aging. The 1/fα noise in those systems was accounted for by models

based on the intermittent dynamics [10–12], and the same line of analysis was also

applied to turbulent fluid [13, 14] and fluctuating electroconvection of liquid crystal [15].

More generally, since the power law (2) would naturally suggest scale invariance in time

scales, 1/fα noise is widely expected in scale-invariant processes such as coarsening [16],

self-organized criticality [17, 18], and growth processes [19], all of which are examples

of aging systems. The Wiener-Khinchin theorem cannot be used in aging systems,

but recently an analogous relationship between the correlation function and the power

spectrum was derived for aging systems, named the “aging Wiener-Khinchin theorem”

[20–22].

In this work, taking an example of scale-invariant fluctuations of growing interfaces,

we characterize the power spectrum by a set of recently proposed “critical exponents”

[10, 20–22]. This analysis has an advantage that one does not make any a priori

assumption about the stationarity; instead, with the obtained exponents, one can

judge whether the system is stationary or not, and, if aging is there, determine its

time dependence. For the systems we study here, the observed exponents indeed

indicate the relevance of aging, and they are successfully accounted for by the aging

Wiener-Khinchin theorem. Moreover, this theorem turns out to unveil certain universal

fluctuation property of the studied systems, namely the universal variance of the Baik-

Rains distribution [23] for the Kardar-Parizi-Zhang (KPZ) universality class [19, 24–27].

This demonstrates that, at least in the problem of growing interfaces, the aging Wiener-

Khinchin theorem can be used as a practical tool to characterize the systems of interest.

The paper is organized as follows. Section 2 is devoted to a brief introduction of

growing interface fluctuations and the KPZ class, with some emphasis on remarkable

theoretical developments attained for the (1+1)-dimensional case. The systems to study,

either experimentally or numerically, are described in section 3. The results on the power

spectrum, characterized through the critical exponents and the aging Wiener-Khinchin

theorem, are presented in section 4. Concluding remarks are given in section 5.

2. Growing interfaces and KPZ

When a system consists of two regions bordered by a well-defined interface, and if one

of the two regions expands in a fluctuating manner, the interface typically develops

intricate winding structure (see, e.g., figure 1ab). Examples abound from physics to
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Figure 1. Growing interfaces in liquid-crystal turbulence [28–30], separating an

expanding DSM2 region (black) and the surrounding DSM1 region (gray). See

section 3.1 for descriptions of the experimental system and the DSM1/DSM2

turbulence. Starting from a point DSM2 nucleus, one obtains a circular interface

(a), while from a line a flat interface is generated (b). The time is measured from

the emission of laser pulses used to trigger DSM2. See also Supplementary Movies of

reference [29]. (c) Sketch of the DSM1 and DSM2 states. DSM2 consists of a large

density of line defects, specifically disclinations, in the liquid-crystal director field. The

panels (a) and (b) were reprinted with adaptation from Fig. 3(a) of reference [30] and

the panel (c) from Fig. 1(b) of the same reference, with permission of Springer.

biology and chemistry, as well as from nanoscales to macroscales, including surfaces

of deposited solid films [31, 32], growing clusters of liquid-crystal turbulence [28–30],

fronts of smoldering papers [33, 34], expanding colony of bacteria [35], propagation of

chemical waves in disordered flow [36], etc. (see also [19, 37]). Interestingly, the observed

patterns are generically scale-invariant, without fine tuning of experimental conditions

and/or parameters [19]: in terms of the local height of interface, h(x, t), as a function of

lateral coordinates x and time t (figure 1ab)§, its fluctuation δh(x, t) ≡ h(x, t)−〈h(x, t)〉
is statistically invariant under certain set of coordinate rescaling, t → bt, x → b1/zx,

δh → bβδh. This is analogous to dynamic critical behavior, with β and z playing the

role of the critical exponents and h(x, t) being the order parameter. As a result, such

growing interfaces may be described by a set of universal scaling laws, with the critical

exponents and scaling functions specific to each universality class. The KPZ class is one

such universality class, known to describe the simplest generic case [19], with a variety

§ Note that, for the circular interfaces (e.g., figure 1a), the lateral coordinate is more appropriately

specified by the azimuth θ, which remains constant along the mean growth direction. With this, the

coordinate x (of dimension of length) can be formally defined by x = R(t)θ, using mean radius R(t) at

time t.
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of examples from theoretical models and experiments; in fact, the above-mentioned

experiments were all shown to be in the KPZ class, at least in some parameter space

and with the materials chosen in the studies‖.
Recently, the KPZ class became crucial in the studies of non-equilibrium scaling

laws, when it turned out to be analytically tractable in many aspects for the (1 + 1)-

dimensional case [25–27], i.e., for one-dimensional interfaces growing in two-dimensional

space. In this case, the scaling exponents are known to be z = 3/2 and β = 1/3 [19, 24];

the fluctuation amplitude increases as δh ∼ t1/3, with the lateral correlation length

ξ ∼ t2/3. The height h(x, t) grows, therefore, as

h(x, t) ' v∞t+ (Γt)1/3χx,t, (4)

with constant parameters v∞,Γ and a rescaled random variable χx,t, which carries all

relevant information of KPZ interface fluctuations. The recent theoretical developments

then provided exact solutions for the one-point distribution of χx,t, as well as its spatial

correlation, revealing surprising link to random matrix theory, combinatorics, and

quantum integrability [25–27, 38]. Remarkably, the results turned out to be classified

into a few universality subclasses [38], determined by the global geometry of interfaces,

or equivalently by the initial condition (table 1). For circular interfaces growing from a

point nucleus (figure 1a and figure 2b), the asymptotic distribution is given by the Tracy-

Widom distribution for the Gaussian unitary ensemble (GUE), originally introduced to

describe fluctuations of the largest eigenvalue of GUE random matrices [39]; in other

words, χx,t
d→ χ2, where “

d→” denotes convergence in the distribution and χ2 is the

standard random variable for the GUE Tracy-Widom distribution. This case is called

the circular subclass, a subset of the KPZ class for circular interfaces. Similarly, the flat

subclass describes globally flat interfaces starting from a straight line (figure 1b). It is

characterized by the Tracy-Widom distribution for the Gaussian orthogonal ensemble

(GOE) [40], or more precisely, χx,t
d→ χ1 with χ1 being the GOE Tracy-Widom variable

multiplied by 2−2/3 [38]. Another established subclass is associated with the Brownian

initial condition, i.e., h(x, 0) = Bx with Brownian motion Bt, which is known to coincide

with the asymptotic profile of interfaces in the (1+1)-dimensional KPZ class [19]¶. This

subclass is then characterized by another distribution called the Baik-Rains distribution

[23] (χx,t
d→ χ0). The spatial correlation was also solved, and given by time correlation of

certain stochastic process, called the Airy2, Airy1, and Airystat process for the circular,

flat, and Brownian subclass, respectively [25–27]. While other subclasses may also

exist, these three are the main subclasses constituting the (1 + 1)-dimensional KPZ

‖ There also exist many experimental examples of growing interfaces that are not in the KPZ class

[19, 37]. Although some of those systems have macroscopic ingredients that can generally affect

the universality class, such as quenched disorder, it remains challenging to predict whether a given

experimental system is in the KPZ class or not.
¶ Therefore, this subclass is often called the “stationary subclass” in the literature, while here we call it

the Brownian subclass, in order to avoid confusion with stationary processes. The diffusion coefficient

of the Brownian motion Bt is chosen in such a way that it matches with that of the asymptotic interface

profile.
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Table 1. Three representative subclasses for the (1+1)-dimensional KPZ class [25–27].

KPZ subclass circular flat Brownian

initial conditiona

(typical)
h(x, 0)=

{
0 (x = 0)

−∞ (x 6= 0)
h(x, 0) = 0 h(x, 0) = Bx

(or point nucleus)

exponents z = 3/2 and β = 1/3 for all subclasses

distribution GUE Tracy-Widom (χ2) GOE Tracy-Widom (χ1) Baik-Rains (χ0)

(mean, var, s, k)b (-1.77, 0.813, 0.224, 0.093) (-0.760, 0.638, 0.293, 0.165)c (0, 1.15, 0.359, 0.289)

spatial process Airy2 process Airy1 process Airystat process
a The listed initial conditions are those typically used in the literature. Other conditions that share
the same global symmetry are expected to lead to the same subclass.
b Mean 〈χi〉, variance 〈χ2

i 〉c, skewness 〈χ3
i 〉c/〈χ2

i 〉
3/2
c and kurtosis 〈χ4

i 〉c/〈χ2
i 〉2c are shown, where 〈χni 〉c

denotes the nth-order cumulant of χi. These are cited from [38], in which more precise values are
given.
c As noted in the main text, χ1 differs from the usual definition of the GOE Tracy-Widom variable by
the factor 2−2/3. The values of the cumulants change accordingly.

class, characterized by the same critical exponents, yet by the different non-Gaussian

distributions and correlation functions.

In contrast to these remarkable developments on the distribution and spatial

correlation functions [25–27], much less is known theoretically about the time

correlation; analytical treatment of two-time quantities was made only very recently

[41–43] and many other aspects of time correlation, in particular persistence properties,

observed experimentally [30, 44] and numerically [44–47] remain to be explained. Here

we aim to characterize how the local fluctuation of interface δh(x, t) evolves in time,

using the power spectrum and related analysis developed in the context of the 1/fα

noise. Note that, while KPZ dynamics is clearly non-stationary, or aging, depending

explicitly on time t measured from the start of the growth process, this non-stationarity

will not be assumed a priori in the data analysis. Concerning the systems to study, we

use the experiment on liquid-crystal turbulence [28–30] (figure 1; circular and flat cases),

as well as an off-lattice version of the Eden model [47] (figure 2; circular case) and a

discrete version of the polynuclear growth (PNG) model [48] (flat case), described in the

following section. These models are not meant to describe the liquid-crystal turbulence,

but studied instead to test universality of the results within the KPZ class.

3. Systems

3.1. Liquid-crystal turbulence

Nematic liquid crystal with negative dielectric anisotropy ε‖ < ε⊥ and positive

conductivity anisotropy σ‖ > σ⊥ is known to develop convection, when confined

between two plates and subjected to an alternating electric field with a relatively low
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frequency, driven by the Carr-Helfrich effect [49]. Similarly to the thermal convection,

this electroconvection undergoes a series of transitions in the convection pattern as

the driving strength – the amplitude of the voltage applied to the system – increases.

Eventually, the system reaches regimes of turbulence, or more precisely, spatiotemporal

chaos, called the dynamic scattering modes (DSM) 1 and 2. They are distinct in the

density of topological defects, specifically, disclinations, in the liquid-crystal director

field (figure 1c): while DSM1 has no sustained disclinations, DSM2 consists of a large

density of densely entangled disclinations. Therefore, DSM2 scatters light more strongly,

hence looks darker in the transmitted light images (see figure 1). Under sufficiently high

applied voltage, these disclinations are kept dense, stretched, and randomly transported

by local turbulent flow of the electroconvection. This leads in macroscopic scales to

fluctuating growth of the DSM2 region, which takes over the metastable DSM1 state

(figure 1).

In our setup, detailed in the author’s past publication [30], the initial DSM2 region

was generated by shooting ultraviolet laser pulses to the sample. If pulses are focused

on a point, a DSM2 point nucleus is created, which then grows, forming a circular

interface (figure 1a). If the laser beam profile is expanded along a line, longer than

the width of the camera view field, DSM2 is generated on that line, producing a flat

interface (figure 1b). This allows us to study both circular and flat interfaces under the

practically same experimental conditions, each case repeated nearly one thousand times

to achieve high statistical accuracy. For the applied voltage 26 V used here, the scaling

coefficients were estimated to be v∞ = 33.24(4)µm/s and Γ = 2.29(3) × 103 µm3/s for

the circular case, and v∞ = 32.75(3)µm/s and Γ = 2.15(10)×103 µm3/s for the flat case

[30], where the numbers in the parentheses indicate uncertainties in the last digit(s) of

the estimates+. The circular and flat interfaces were found to show the hallmarks of the

circular and flat KPZ subclasses, respectively, indicated in table 1. In the following, the

applied voltage is fixed at 26 V, but as long as the voltage is within a reasonable range

for studying growing DSM2 interfaces, we can expect the same results (under proper

rescaling) at different voltages [30].

To evaluate the power spectrum (1), we use time series of h(x, t) along the growth

direction, i.e., with fixed θ for the circular case and fixed x for the flat case (see

figure 1ab). Because the interfaces were not faithfully detected for the first few seconds

from the laser emission, the time series were recorded for tmin ≤ t ≤ tmax, with

(tmin, tmax) = (2.0 s, 30.5 s) for the circular case and (tmin, tmax) = (3.0 s, 63.0 s) for the

flat case. Concerning the time resolution, all images taken during the above time periods

were analyzed in the present study, so that the time interval ∆t is 0.10 s for the circular

case and 0.12 s for the flat case, improving the resolution used in the past work [30].

+ Although the parameters v∞ and Γ are expected to be independent of the interface geometry,

the experimentally obtained estimates were slightly different. This is presumably because of small

uncontrolled shifts in the experimental conditions, during the period (8 days) between the two sets of

the experiments.
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Figure 2. Off-lattice Eden model. (a) Evolution rule. Suppose the gray particle

is chosen from Npart(t) existing ones. Then we attempt to put a new particle, in

an angular direction randomly chosen from [0, 2π). If it does not overlap with other

particles (such as the position A in the figure), the attempt is adopted, otherwise (such

as the position B) it is withdrawn. (b) Typical evolution of an Eden cluster.

3.2. Off-lattice Eden model

To corroborate the experimental results obtained in the present work, we also investigate

simple models of growing interfaces, which are known to be in the KPZ class. For the

circular case, to attain better statistical accuracy, one needs an isotropically growing

system so that the interface height h(x, t) at all angular positions can be treated equally.

For this reason, here we use the off-lattice Eden model introduced in [47]. This model

deals with a cluster made of round particles of unit diameter, placed one by one in a

two-dimensional space (figure 2a). Suppose there are Npart(t) particles at time t. Then,

at each time step, one chooses a particle randomly from them, and attempts to introduce

a new particle next to it, in a direction chosen randomly in the two-dimensional plane.

The new particle is placed if it does not overlap with any existing particle, otherwise

the attempt is withdrawn. In any case, time t is increased by 1/Npart(t). Therefore,

starting from a particle at the origin at t = 0, one obtains a growing cluster, bordered

by an on average circular interface (figure 2b).

To speed up simulations, particles without empty adjacent space were excluded

from the count of Npart(t) (but still exist). Similarly, since we are only interested in

the interface, particles left inside the outermost perimeter were also regularly excluded

(see [47] for details). Time series were obtained from 100 independent realizations, in

the range t ≤ tmax = 50000 with resolution ∆t = 1. For the scaling coefficients, we use

v∞ = 0.51371 and Γ = 1.00, taking the estimates from extensive simulations reported

in [50].

3.3. Discrete PNG model

For the flat case, since we do not need isotropic growth, a lattice model is more

convenient and fast to simulate. Here we use a discrete version of the PNG model

with checkerboard updating, defined as follows. In this model, the height h(x, t) is

integer, and both x and t are discretized with step size δx and δt, respectively, i.e.,

x = mδx and t = nδt with integer m and n. Starting from the flat initial condition
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h(x, 0) = 0, the height is updated by

h(x, t+ δt) = max{h(x− δx, t), h(x, t), h(x+ δx, t)}+ η(x, t), (5)

where η(x, t) is a random integer, independently drawn from the geometric distribution:

Prob[η(x, t) = k] = (1− p)pk (k = 0, 1, 2, · · ·) (6)

The update is made only for odd sites at odd times and for even sites at even times, i.e.,

mod(|n −m|, 2) = 0. The advantage of this checkerboard updating is that the scaling

coefficients are known exactly [48], specifically,

v∞ =

√
p

(1−√p)δt
, Γ =

√
p(1 +

√
p)

2(1−√p)3δt
. (7)

By δx = δt → 0 and p = 2ρδxδt, one obtains the standard PNG model defined in

continuous space and time, with nucleation rate ρ and step speed 1.

In the present work, we use δx = δt = 0.1 and ρ = 2. The lattice has 5 × 105

sites with the periodic boundary condition. Time series were recorded only at even

time steps, hence the resolution is ∆t = 2δt = 0.2. Simulations were carried out up to

tmax = 106δt and 100 independent realizations were obtained.

4. Results

4.1. power spectrum and critical exponents

In the present work, we shall consider time series of two different quantities, both

reflecting the local fluctuation of the height h(x, t) at a fixed position (fixed x for the

flat case and fixed θ for the circular case; see figure 1ab). The first quantity is the height

fluctuation from the ensemble average∗, δh(x, t) ≡ h(x, t) − 〈h(x, t)〉, which grows as

t1/3 (figure 3, top panels). The second quantity is the rescaled height, defined by

q(x, t) ≡ h(x, t)− v∞t
(Γt)1/3

' χx,t, (8)

which remains O(1) (figure 3, bottom panels) with a well-defined asymptotic

distribution, i.e., q
d→ χi with i = 1 or 2 (see table 1). Consequently, we study the

following two power spectra, averaged over x and realizations:

Sh(ω;T ) =

〈
1

N∆t

∣∣∣∣∣
N∑
n=1

δh(x, tn)e−iωtn∆t

∣∣∣∣∣
2〉

(9)

and

Sq(ω;T ) =

〈
1

N∆t

∣∣∣∣∣
N∑
n=1

q(x, tn)e−iωtn∆t

∣∣∣∣∣
2〉

(10)

with tn = tmin + (n − 1)∆t (tmin = ∆t for the simulations)], tN = T , and ω being a

multiple of 2π/N∆t.
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(a) (b)off-lattice Eden model (circular) discrete PNG model (flat)

Figure 3. Typical time series of δh(x, t) and q(x, t) for the circular (a) and flat (b)

cases. Numerical data are shown here, for which much longer time series are available.

The solid and dashed black lines indicate the mean value and the range of the standard

deviation, respectively, valid for large t. It is given by ±(Γt)1/3
√
〈χ2
i 〉c for δh(x, t) and

〈χi〉 ±
√
〈χ2
i 〉c for q(x, t), with i = 2 for the circular case and i = 1 for the flat case.

Figure 4 shows the power spectra Sh(ω;T ) (panel a-d) and Sq(ω;T ) (panel e-h) with

different T , for both the experiments (a,b,e,f) and the simulations (c,d,g,h) and for both

the circular case (a,c,e,g) and the flat case (b,d,f,h). In all cases, the power spectrum

shows a power law at low frequencies, Sh(ω;T ) ∼ ω−αh and Sq(ω;T ) ∼ ω−αq with

αh = αq = 5/3, hence the 1/fα-type spectrum is identified (see table 2 for the estimated

exponent values). Moreover, while Sh(ω;T ) does not depend on the measurement time

T (figure 4a-d), Sq(ω;T ) is found to decrease with increasing T (figure 4e-h). This may

look somewhat counterintuitive if we recall δh(x, t) ∼ t1/3 and q(x, t) ∼ O(1), but it can

be clearly accounted for, as explained below.

To evaluate the T -dependence of Sq(ω;T ), we seek for such a value of zq that

Sq(ω;T )T zq overlaps with different T (figure 5). While the experimental data seem

to favor zq ≈ 1/2 within the limited observation time (figure 5a-d), the numerical

data, obtained with much wider ranges of T , overlap reasonably well with zq ≈ 2/3

for large T (figure 5e,f and insets; see also table 2 for the estimates) and rule out

zq = 1/2 (figure 5g,h and insets). Indeed, since q(x, t) ∼ O(1), the integrated

power
∫∞

2π/T
Sq(ω;T )dω should remain finite for this process [4, 12, 22]; with Sq(ω;T ) ∼

T−zqω−αq , this condition implies zq = αq − 1 = 2/3.

∗ Throughout section 4, the ensemble average 〈· · ·〉 is obtained by averaging over realizations and

spatial positions.
] Since aging processes do not have time translation symmetry, power spectrum in such processes

depends not only on the measurement time T but also on the time to wait before the measurement,
tmin [12, 51]. Here we shall not consider this tmin-dependence, because tmin is fixed, taken as small as

possible, and tmin � T is satisfied. Theoretically, the aging Wiener-Khinchin theorem that we shall

use in this paper can be generalized for the case where tmin is not negligible [52].
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Figure 5. Evaluation of the aging exponent zq for the power spectrum of the rescaled

height, Sq(ω;T ), for the liquid-crystal experiments [circular (a,c), flat (b,d)], the off-
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Further, recent studies [10, 20–22] proposed a set of critical exponents for the power

spectrum. With S∗(ω;T ) given by (1), where the subscript ∗ represents the choice of

the variable X(t), the exponents (α∗, z∗, µ∗, δ∗) are defined by:

〈S∗(ω;T )〉 ∼ T−z∗ω−α∗ (for small ω) (11)

and

〈S∗(0;T )〉 ∼ T µ∗ , Σ∗(T ) ≡
∫ ∞

2π/T

〈S∗(ω;T )〉dω ∼ T δ∗ . (12)

For our study, we define two sets of the exponents (αh, zh, µh, δh) and (αq, zq, µq, δq)

for Sh(ω;T ) and Sq(ω;T ), respectively. The results in figures 4 and 5 then indicate

αh = αq = 5/3, zh = 0, and zq = 2/3. For the exponents µ∗ and δ∗, our data indicate

µh = 5/3, δh = 2/3, µq = 1, and δq = 0 (figure 6 and table 2), though the experimental

results for some exponents are not conclusive within the limit of the observation time.

4.2. Aging Wiener-Khinchin theorem

In fact, the exponents (α∗, z∗, µ∗, δ∗) we obtained can be accounted for by the recently

formulated “aging Wiener-Khinchin theorem” [20–22]. Similarly to the standard

Wiener-Khinchin theorem valid for stationary processes, the aging Wiener-Khinchin

theorem describes relationship between the power spectrum S∗(ω;T ) and the correlation

function C∗(τ ; t), defined by (1) and (3), respectively, for aging processes. Specifically,

under the assumption that the correlation function C(τ ; t) takes the form

C∗(τ ; t) ' tΥ∗φ∗(τ/t) (13)

for large τ and t, which is usually satisfied in scale-invariant systems including the KPZ-

class interfaces, the aging Wiener-Khinchin theorem states that the ensemble-averaged

power spectrum 〈S∗(ω;T )〉 is obtained by

〈S∗(ω;T )〉 =
2TΥ∗+1

2 + Υ∗

∫ 1

0

dζ(1− ζ)Υ∗φ∗

(
ζ

1− ζ

)
1F2

[
1+ Υ∗

2
; 1

2
, 2+ Υ∗

2
;−(ωTζ

2
)2
]

(14)

with the hypergeometric function 1F2[a; b1, b2;x] [20–22]. Then one can show that the

exponents (α∗, z∗, µ∗, δ∗) are controlled by short-time behavior of φ∗(τ/t), which can

usually be expanded as

φ∗(y) ' a∗ − b∗yV∗ (y � 1), (15)

Table 2. Experimental and numerical estimates of the critical exponentsa.
systemb αh zh µh δh αq zq µq δq
exp. (circular) 1.69(3) 0.02(4) 1.69(3) 0.63(2) 1.61(5) ≈ 1 ≈ 0

exp. (flat) 1.67(5) 0.03(3) 1.64(3) 0.60(3) 1.67(5) ≈ 1 ≈ 0

Eden (circular) 1.67(2) 0.00(3) 1.68(3) 0.67(2) 1.61(9) 0.63(3) 1.02(4) 0.01(3)

PNG (flat) 1.672(15) 0.010(15) 1.664(13) 0.667(13) 1.64(2) 0.64(4) 1.00(2) 0.001(12)

theory (table 3) 5/3 0 5/3 2/3 5/3 2/3 1 0
a The number in parentheses indicates a range of error in the last digit(s), evaluated within the observation time. The
symbol ≈ represents that the data are consistent with the indicated exponent value, but do not seem to reach the
asymptotic time region during the observation time; consequently, the range of error could not be estimated reliably.
b Abbreviations: exp. = liquid-crystal experiment, Eden = off-lattice Eden model, PNG = discrete PNG model.
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and obtain the following scaling relations [22]:

α∗ = 1 + V∗, z∗ = V∗ −Υ∗,

µ∗ = 1 + Υ∗, δ∗ = max{−z∗, µ∗ − 1}. (16)

For the KPZ class, with time series X(t) = δh(x, t) or q(x, t), we have [53]

Υh = 2β = 2/3, Υq = 0, Vh = Vq = 2β = 2/3, (17)

where we used β = 1/3 for the (1 + 1)-dimensional case. With (16) and (17), we

obtain the values of (αh, zh, µh, δh) and (αq, zq, µq, δq) as summarized in table 3, which

are consistent with all the observations presented in figures 4-6 and table 2.

4.3. 1/fα spectrum and the Baik-Rains universal variance

In addition to the exponents, the aging Wiener-Khinchin theorem (14) also gives the

coefficient C∗ of the 1/fα spectrum [20–22], 〈S(ω;T )〉 ' C∗T
−z∗ω−α∗ with ωT � 1, by

C∗ =
2b∗ sin(πV∗/2)Γ(1 + V∗)

1 + Υ∗ − V∗
, (18)

with the gamma function Γ(·). The condition ωT � 1 implies that the time scale

of interest, ω−1, is much smaller than the observation time T , albeit larger than any

microscopic time scale of the system.

Interestingly, for KPZ, this condition is exactly what one would need for the

Brownian subclass [41, 43, 53, 54]. Starting from an arbitrary initial condition, we wait

for long time T , so that the interface profile h(x, T ) becomes sufficiently close to the

asymptotic profile, or Brownian motion, Bx (see section 2). Now we regard h(x, T ) as

a new initial condition and consider the relative height h′(x, t′) = h(x, T + t′)− h(x, T ),

then h′(x, t′) evolves as in (4) and the corresponding random variable χ′x,t′ exhibits the

universal properties of the Brownian KPZ subclass, as long as t′ � T [27, 41, 43, 54, 55].

Indeed, with Ch(τ ; t) = 〈δh(t+τ)δh(t)〉 and φh(τ/t) defined by (13) accordingly, we can

show, for τ/t→ 0,

φh(τ/t) ' Γ2/3

[
〈χ2

i 〉c −
1

2
〈χ2

0〉c(τ/t)2/3 +O(τ/t)

]
. (19)

Here, χi = χ2 or χ1 depending on the initial condition (circular or flat, respectively) and

〈·2〉c denotes the variance; hence 〈χ2
0〉c is the variance of the Baik-Rains distribution, a

universal hallmark of the Brownian KPZ subclass (table 1). Comparing (19) with (15),

Table 3. Critical exponents for the (1 + 1)-dimensional KPZ class.

time series Υ∗ V∗ α∗ z∗ µ∗ δ∗
height fluctuations δh(x, t) 2/3 2/3 5/3 0 5/3 2/3

rescaled height q(x, t) 0 2/3 5/3 2/3 1 0
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we obtain bh = 1
2
Γ2/3〈χ2

0〉c. Therefore, using (18) with Vh = Υh = 2/3, we finally arrive

at

Sh(ω;T ) ' 〈χ2
0〉cC ′hω−5/3, C ′h =

√
3

2
Γ(5/3)Γ2/3. (20)

In other words, the coefficient of the 1/fα spectrum turns out to be the universal Baik-

Rains variance, times a constant factor C ′h.

This is tested in figure 7, where Sh(ω;T )ω5/3/C ′h is plotted against ω and compared

with 〈χ2
0〉c. For the experimental circular interfaces, we find remarkable agreement

(figure 7a); from the local minimum of the plateau, we obtain 1.151(12), very close to

the Baik-Rains variance 〈χ2
0〉c = 1.15039 [38]. For the other three cases (figure 7b-d), in

contrast, we find some deviations from 〈χ2
0〉c, which however decrease with increasing T .

The deviations are found to decay by some power law T−a, with exponent a compatible

in the range 1/6 . a . 1/3. From the PNG data, a ≈ 1/4 is suggested, but data for

other systems and for longer observation times are needed to make a conclusion about

the value of this exponent. In any case, all the results presented in figure 7 indeed

support the validity of (20) in the asymptotic limit; the coefficient of the 1/fα spectrum

is essentially the Baik-Rains universal variance.

Our result indicates that, if the relative height h′(x, t′) = h(x, T + t′)−h(x, T ) with

t′ � T is considered, circular and flat KPZ interfaces indeed approach the Brownian

subclass. This crossover has been known for the flat interfaces [27, 41, 54, 55], but to the

knowledge of the author it is first shown here for the circular case, apart from indirect

evidence in [43], in agreement with theoretical predictions [41, 43]. Curiously, by direct

analysis of the relative height h′(x, t′), using the liquid-crystal experimental data for the

flat case, the variance of the rescaled relative height remained far from the Baik-Rains

variance within the observation time [54], which is also the time used in the present

study. As shown here, for this experimental system, the power spectrum exhibits the

Baik-Rains signature much earlier, by simpler analysis. On the other hand, the earlier

work [54] also used a discrete PNG model††, for which the Baik-Rains variance was

more easily found in the relative height h′(x, t′) than in the power spectrum shown in

the present paper. Indeed, the relative height method has been usually used in numerical

studies and provided good estimates of the Baik-Rains variance [27, 53–56]. Since the

two methods seem to have different strengths of the finite-time effect, it would be useful

to measure both the relative height and the power spectrum. Note that the power

spectrum method can also be used for higher dimensions, for which the counterpart of

the Baik-Rains distribution is not solved analytically. For 2 + 1 dimensions, numerical

[57] and non-exact theoretical [58] estimates are available; it would be then interesting

to compare the power-spectrum method with these known results.

††The discrete PNG model studied in [54] was defined with the synchronous update, while in the present

paper we used the checkerboard update. The author also measured the power spectrum Sh(ω;T ) in

the case of the synchronous update, and found a result similar to figure 7.
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Figure 7. Comparison of the coefficient of the 1/fα spectrum with the Baik-

Rains universal variance, for the liquid-crystal experiments [circular (a), flat (b)],

the off-lattice Eden model [circular (c)], and the discrete PNG model [flat (d)].

According to the aging Wiener-Khinchin theorem and the KPZ scaling laws, the

ordinate Sh(ω;T )ω5/3/C ′h is expected to converge to the Baik-Rains variance 〈χ2
0〉c for

T−1 � ω � min{∆t−1, τ−10 }, where ∆t is the time resolution and τ0 is a microscopic

time scale of the system (see (20)). The dashed lines indicate 〈χ2
0〉c = 1.15039. In the

insets, the difference between Sh(ω;T )ω5/3/C ′h and 〈χ2
0〉c is plotted as a function of T .

The difference is measured from the value of the plateau region of the main-panel data

for (b,c), with errorbars indicating the minimum and maximum in that region; for (d)

the difference is measured from the local minimum estimated by cubic fitting. The

dotted, dashed-dotted, and dashed lines are guides for the eyes, indicating exponents

-1/6, -1/4, and -1/3, respectively.
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5. Concluding remarks

In this paper, we have studied the 1/fα-type power spectrum of interface fluctuations

in the (1 + 1)-dimensional KPZ class, both experimentally and numerically, using the

liquid-crystal turbulence as well as simple models, specifically, the off-lattice Eden model

and the discrete PNG model. We measured the power spectrum for two different sets

of time series, namely those for the height fluctuation δh(x, t) and the rescaled height

q(x, t), and characterized it by a set of critical exponents (figures 4-6 and table 2). The

observed exponents were found to be in good agreement with predictions (16) and (18)

from the recently proposed, aging Wiener-Khinchin theorem [20–22]. Moreover, this

theory revealed that the coefficient of the 1/fα spectrum contains essential information

on the universal properties of the asymptotic KPZ interfaces, namely the Baik-Rains

universal variance, through (20). This intriguing connection was corroborated by both

experimental and numerical data (figure 7). In relation to the KPZ universality subclass

(table 1), our results constitute experimental and numerical supports that the relative

height h′(x, t′) = h(x, T + t′) − h(x, T ) of circular and flat interfaces belongs to the

Brownian KPZ subclass in the asymptotic limit t′/T → 0 with t′, T →∞. On the other

hand, the power spectrum does not seem to be as efficient for studying time correlation

properties in the other limit t′/T → ∞, which characterize the subclass for the bare

height h(x, t) (i.e, circular or flat in our case) and are known to be different between

the two cases, even qualitatively [30, 41, 44].

From broader perspectives, it may be worth making a few general remarks about

the power spectrum and the stationarity, which are not new but sometimes overlooked

in the literature. First, one should recall that the stationarity in the power spectrum

(z∗ = 0) does not necessarily imply the stationarity of the underlying process, neither

the boundedness of the time series; this is well-known from examples like the Brownian

motion and reminded here in figure 4a-d, where Sh(ω;T ) does not depent on T but the

process δh(x, t) is aging and unbounded. The stationarity of the process can be inferred

instead by measuring in addition the “power” at zero frequency, 〈S(0;T )〉 = T 〈X̄2〉
with X̄ = 1

T

∫ T
0
X(t)dt, which is either linear in T (if X̄ 6= 0) or constant (if X̄ = 0)

for stationary processes, while in the aging case it grows with a nontrivial exponent

µ∗ = α∗ − z∗. Consistency with the aging scenario can be checked further through the

set of the scaling relations (16) from the aging Wiener-Khinchin theorem [20–22]. It is

also important to remark that, in aging systems, time average and ensemble average are

in general different [12, 20–22]; while the present work focused on the ensemble average,

a different form of the aging Wiener-Khinchin theorem should be used if one aims to

connect to the time-averaged correlation function. Since aging seems to occur rather

often in systems showing 1/fα noise, neither the equivalence between ensemble average

and time average nor the usual Wiener-Khinchin theorem should be used unless firm

evidence of stationarity is obtained. From this perspective, measuring the exponents

(α∗, z∗, µ∗, δ∗) is a versatile approach that does not require any assumption on aging or

stationarity, yet useful to characterize underlying processes, as shown for the example
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of the KPZ class we studied here. It is hoped that this approach will also help to study

other examples of the 1/fα-type spectrum, reported in the wealth of physical systems

[1–4].
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[13] Herault J, Pétrélis F and Fauve S 2015 Europhys. Lett. 111 44002
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