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Despite the prominent importance of the Lyapunov exponents for characterizing chaos, it
still remains a challenge to measure them for large experimental systems, mainly because
of the lack of recurrences in time series analysis. Here we develop a method to overcome
this difficulty, valid for highly symmetric systems such as systems with global coupling, for
which the dimensionality of recurrence analysis can be reduced drastically. We test our
method numerically with two globally coupled systems, namely, logistic maps and limit-cycle
oscillators with global coupling. The evaluated exponent values are successfully compared
with the true ones obtained by the standard numerical method. We also describe a few
techniques to improve the accuracy of the proposed method.

Although chaos with many degrees of freedom
abounds in a wide variety of natural systems,
such as turbulence in geophysical flows and lab-
oratory experiments1, cardiac arrhythmia2, and
chemical reactions3, it still remains challenging
to characterize their instability in a quantitative
manner. A practical method for measuring Lya-
punov exponents is particularly called for, be-
cause the Lyapunov exponents and related con-
cepts are useful to characterize various aspects
of chaos, as well as for application purposes such
as chaos control4. In this work, we propose a
method to evaluate the Lyapunov exponents of
large chaotic systems from time series, which is
valid for systems with a high degree of symmetry.
Focusing on globally coupled systems, and using a
time series of a single local variable and the mean
field, we demonstrate that our method can in-
deed estimate the full spectrum of the Lyapunov
exponents correctly. We expect that the pre-
sented idea can also be extended to other types
of symmetric systems, paving the way toward ex-
perimental investigations of instability of large
chaotic systems in the future.

I. INTRODUCTION

Instability is one of the most fundamental properties
of nonlinear dynamical systems. It is often characterized
by the Lyapunov exponents, i.e., the exponential rates
of divergence of infinitesimal perturbations given to a
trajectory. The Lyapunov exponents are also known to
characterize properties of chaotic systems other than in-
stability, such as the metric entropy and the attractor
dimension5. Moreover, for large systems, the extensivity
of chaos is defined on the basis of the spectrum of the Lya-
punov exponents6. From the application point of view,
the Lyapunov exponents and related objects play an im-
portant role in chaos control7 and data assimilation8. It
is therefore not surprising that the Lyapunov exponents

have been central quantities to investigate in numerical
studies of chaos, in which case the equation of motion is
usually given and the methods to evaluate the exponents
are established9–11. However, experimentally, the situa-
tion is in sharp contrast, because the equation of motion
is usually unavailable and one often needs to resort to
time series to estimate the Lyapunov exponents.

The most common experimental approach is the
following4,9,12: (i) First, time series, say s(t), are embed-
ded to a space of sufficiently high dimensionality, by use
of time-delayed coordinates s(t) = [s(t), s(t − τ), s(t −
2τ), · · · ]. (ii) Recurrences of trajectories, i.e., pairs of
s(ti) and s(tj) with small ||s(ti)−s(tj)|| are detected and
the growth rate of ||s(ti+ t)−s(tj + t)|| is measured. Al-
though this method works well for systems with a small
number of degrees of freedom, it cannot be applied to
large systems whose number of degrees of freedom is
large (typically & 10), because recurrence becomes ex-
tremely rare in such high-dimensional space. Recently,
Pathak et al. used a machine learning technique to time
series data and succeeded in predicting trajectories and
even Lyapunov exponents of a large spatially-extended
system13. This is an encouraging development, but ad-
justing many parameters involved in this method, with-
out guiding principles, is presumably a delicate task in
practice.

In this work, we choose to extend the recurrence
method and attempt to overcome the problem of the lack
of recurrences in large systems. Here we restrict our tar-
get to a specific kind of systems, namely systems with
global coupling, but we believe our method can be ex-
tended to other types of systems with a high degree of
symmetry. We focus on the fact that the evolution of a
local variable does not necessarily require a large num-
ber of variables; in the case of globally coupled systems,
it is determined only by the local variable and the mean
field. We therefore collect recurrences with this local set
of variables and show that it is sufficient to construct
the global Jacobian, which is necessary to compute the
full spectrum of the Lyapunov exponents. We apply our
method to two globally-coupled systems, specifically, lo-
gistic maps and limit-cycle oscillators with global cou-
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pling, and demonstrate that this method is able to eval-
uate the Lyapunov spectrum reasonably well. We also
describe a few techniques to improve the accuracy of the
proposed method.

II. METHOD

Here we describe our method for globally coupled sys-
tems in a general manner. For simplicity, it is described
for the case in which the local evolution is given by a
one-dimensional map, but generalization to higher di-
mensions and to differential equations is straightforward.

Consider a globally coupled system given by

xj(t+ 1) = f(xj(t),m(t)) (1)

with i = 1, 2, . . . , N , where f(x,m) is a nonlinear map,
xj(t) represents the ith local variable at discrete time t,
m(t) is the mean field given by

m(t) :=
1

N

N∑
j

xj(t). (2)

The full Jacobian matrix for this system is

J(x1(t), . . . , xN (t))

=


∂
∂x1

f(x1(t),m(t)), · · · , ∂
∂xN

f(x1(t),m(t))
...

...
∂
∂x1

f(xN (t),m(t)), · · · , ∂
∂xN

f(xN (t),m(t))

 .

(3)

Here, note that the function f(x,m) takes two indepen-
dent arguments x and m, but since m(t) is given by
Eq. (2), the derivative in Eq. (3) should read

∂

∂xi
f(xj(t),m(t))

= δij
∂f

∂x
(xj(t),m(t)) +

1

N

∂f

∂m
(xj(t),m(t)) (4)

with Kronecker’s delta δij . An important observation
here is that the full Jacobian is determined only by the
two derivatives of the local map, ∂f∂x and ∂f

∂m . Therefore,
time series data of a single local variable x1(t) and the
mean field m(t) are actually sufficient to reconstruct the
full Jacobian matrix J .

We now describe the method. Assume that we have
time series of a single local variable x1(t) and the mean
field m(t). With p1(t) := (x1(t),m(t))T , the total deriva-
tive of Eq. (1) is

dx1(t+ 1) =
(
A(p1(t)), B(p1(t))

)
dp1(t) (5)

where we define

A(p1(t)) :=
∂f

∂x
(x1(t),m(t)),

B(p1(t)) :=
∂f

∂m
(x1(t),m(t)).

(6)

Note that Eq. (5) is equivalent to the evolution of an
infinitesimal perturbation dx1(t) in a system with two

independent variables x1(t) and m(t), defined by Eq. (1).
Therefore, we can use the standard recurrence method for
this two-dimensional reduced space spanned by x1(t) and
m(t), and obtain the 1 × 2 matrix (A(p1(t)), B(p1(t)))
which we shall call the pseudo local Jacobian matrix.
Specifically, adapting the method proposed by Sano and
Sawada14 and by Eckmann and Ruelle5,15, we use pairs
of recurrent points p1(ti) and p1(tj), regard dp1(t) ≈
p1(ti)− p1(tj) and dx1(t + 1) ≈ x1(ti + 1)− x1(tj + 1),
and evaluate the matrix (A(p1(t)), B(p1(t))) by the least
squares method. Importantly, here we are able to obtain
enough recurrences because the relevant dimensionality
is only two (or multiples of two if the local variable xj(t)
is multidimensional). Then, with Eqs. (4) and (6), we
obtain the Jacobian matrix (3) for the full system by

appropriately interpolating ∂f
∂x (x,m) and ∂f

∂m (x,m).
To be precise, from time series data p1(t) =

(x1(t),m(t))T , we evaluate the Lyapunov exponents by
the following two steps. Step I. We estimate the pseudo
local Jacobian matrix (A(p1(t)), B(p1(t))) by recurrences
of time series p1(t) in the reduced space. To detect
recurrences, we consider a small ball of radius ε cen-
tered at a given p1(t), and obtain the set of the in-
dices of the recurrences, Iε(t) := {t′; ||p1(t) − p1(t′)|| <
ε}. Then, by the least squares method as described
above, we obtain an estimate of the pseudo local Jaco-
bian matrix, denoted by (Ã(p1(t)), B̃(p1(t))). Step II.
We numerically emulate both phase-space and tangent-
space dynamics by interpolating the functions f(x,m),
∂f
∂x (x,m), and ∂f

∂m (x,m), from time series data for x1(t+

1) = f(x1(t),m(t)), Ã(p1(t)) ≈ ∂f
∂x (x1(t),m(t)), and

B̃(p1(t)) ≈ ∂f
∂m (x1(t),m(t)), respectively. Then the Lya-

punov exponents are obtained by the standard QR de-
composition method9–11.

In the next two sections, we test our method with nu-
merically generated time series, using globally coupled
logistic maps (Sec. III) and globally coupled limit-cycle
oscillators (Sec. IV).

III. GLOBALLY COUPLED LOGISTIC MAPS

A. System

We first consider a system of globally coupled logistic
maps

xj(t+ 1) = f(Xj(t)),

Xj(t) = (1−K)xj(t) +Km(t),
(7)

with j = 1, 2, . . . , N , a coupling constant K, and the
logistic map f(x) = 1−ax2. Then the 1×2 pseudo local
Jacobian matrix (A(p1(t)), B(p1(t))) is given by

A(p1(t)) = (1−K)f ′(X1(t)),

B(p1(t)) = Kf ′(X1(t)).
(8)

In the following, we set K = 0.1, a = 2 and N = 200,
which correspond to a regime of spatiotemporal chaos16.
We assume that we know the system to analyze has a
global coupling in the additive form, as expressed gener-
ically by Eq. (7), but the function f(x) is unknown. We
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(a)

(c)

(b)

(d)

FIG. 1. Estimation of the coupling constant K for the
globally coupled logistic maps. (a,b) Estimates K̃(t) shown
against t (a) and X1(t) (b). The insets are close-ups showing

the range −0.4 ≤ K̃(t) ≤ 0.6, with the true value K = 0.1

indicated by the black solid line. (c) Estimates K̃(t) shown
against the number of recurrences n(t) := |Iε(p1(t))|. (d)

Standard deviation of the estimates K̃(t) with n(t) = n (blue

dots) and the mean of K̃(t) such that n(t) > n (orange line)
shown against n.

used time series data of a local variable x1(t) and the
mean field m(t), generated numerically after discarding a
transient. The length of the time series data was T = 105.
We applied our method described in Sec. II. The radius
of the ε-ball neighborhood was set to ε = 10−2.

B. Results

First, following Step I described in Sec. II, we eval-
uate the coupling constant K. Using Eq. (7), we have
K = B(p1(t))/[A(p1(t))+B(p1(t))]. Therefore, from the

estimates (Ã(p1(t)), B̃(p1(t))) of the pseudo local Jaco-
bian matrix, we obtain

K̃(t) =
B̃(p1(t))

Ã(p1(t)) + B̃(p1(t))
. (9)

Note that, though the true coupling parameter K is a
constant, it is evaluated for each data point p1(t), so

that K̃(t) is a function of t.

Figure 1(a) shows K̃(t) as a function of time. By taking

the time average, we obtain 〈K̃(t)〉 ≈ 0.09998, which
differs from the true value K = 0.1 only by the order of
10−5. However, the standard deviation of K̃(t) is actually
as large as 0.13, which is also apparent from scattered
data points in Fig. 1(a).

A closer look reveals that errors are anomalously large
when X1(t) ≈ 0 [Fig. 1(b)]. This is easy to understand,
because f ′(X1(t)) = −2aX1(t) is then almost vanishing
and so is dx1(t+ 1) given by Eqs. (5) and (8).

Therefore, the estimation of (Ã(p1(t)), B̃(p1(t))), or

equivalently that of K̃(t) and f̃ ′(X1(t)), becomes numer-

FIG. 2. The spectrum of the Lyapunov exponents λi for
the globally coupled logistic maps, evaluated by the proposed
method (blue circles). The black line indicates the true spec-
trum obtained by the standard QR decomposition method.

ically unstable for those particular data points. The re-
maining source of error is the lack of recurrences. In
Fig. 1(c), the estimates K̃(t) are arranged in ascending
order of n(t) := |Iε(p1(t))|, i.e., the number of the recur-
rence points around the data point p1(t). It is clear that
large errors are essentially originated from data points
with small n. This is quantified in Fig. 1(d), which

shows how the standard deviation of K̃(t) with a given

number of recurrences n, denoted by Std[K̃(t)]n(t)=n, de-
creases with increasing n (blue dots). We can see that
the error level becomes very low, in the order of 10−4,
for n & 100. Errors are not negligible for smaller n, but
even so, the number of such data points is small enough
so that the mean of K̃(t) such that n(t) > n, denoted

by 〈K̃(t)〉n(t)>n, is hardly affected by the choice of the
threshold n [orange line in Fig. 1(d)].

In any case, we obtain a reasonable estimate for the
coupling constant, K̃ := 〈K̃(t)〉 ≈ 0.09998. The deriva-

tive f ′(X) is evaluated, from Eq. (8), by f̃ ′(X̃1(t)) =

Ã(p1(t))+B̃(p1(t)) with X̃1(t) := (1−K)x1(t)+K̃m(t).
Then we carry out Step II in Sec. II and evaluate the
Lyapunov exponents. Figure 2 shows the result (blue
circles), compared with the true spectrum (black line)
which we obtain directly by applying the QR decompo-
sition method to the globally coupled logistic maps. It
is confirmed that our method successfully evaluated the
Lyapunov exponents in the entire spectrum.

IV. GLOBALLY COUPLED LIMIT CYCLE OSCILLATOR

A. System

For the second example, we choose a system with con-
tinuous time, specifically a system of limit-cycle oscilla-
tors with global coupling, defined as follows:
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ẇj(t) = wj(t)− (1 + c2)|wj(t)|2wj(t) +K(1 + ic1)(w̄(t)− wj(t)) (10)

with j = 1, 2, . . . , N , complex variables wj(t), the mean field w̄(t) := (1/N)
∑
j wj(t), a coupling constant K, and

system parameters c1, c2. To write down the pseudo local Jacobian matrix, it is convenient to use xj(t) := Rewj(t)
and yj(t) := Imwj(t), and discretize time by the Euler method with time step ∆t. The resulting submatrices A(p1(t))
and B(p1(t)), which are now 2× 2 with p1(t) := (x1(t), y1(t), x̄(t), ȳ(t))T , read

A(p1(t)) =

(
1− 3x21(t)− y21(t) + 2c2x1(t)y1(t)−K, c2x

2
1(t) + 3c2y

2
1(t)− 2x1(t)y1(t) +Kc1

−3c2x
2
1(t)− c2y21(t)− 2x1(t)y1(t)−Kc1, 1− x21(t)− 3y21(t)− 2c2x1(t)y1(t)−K

)
∆t+

(
1 0
0 1

)
B(p1(t)) =

(
K −Kc1
Kc1 K

)
∆t.

(11)

In the following, we set K = 0.52, c1 = −2.5, c2 = 3.0, which correspond to a turbulent phase17, and the system
size is set to be N = 50. We assume that the target is a system described in the following form:

ẋj(t) = fx(xj(t), yj(t)) +Kxx(x̄(t)− xj(t)) +Kxy(ȳ(t)− yj(t)),
ẏj(t) = fy(xj(t), yj(t)) +Kyx(x̄(t)− xj(t)) +Kyy(ȳ(t)− yj(t)),

(12)

but the functional forms of fx(x, y) and fy(x, y), as well as the values of the four coupling constants are unknown.
The pseudo local Jacobian matrix then reads:

A(x1, y1) =

(
∂fx
∂x (x1, y1)−Kxx,

∂fx
∂y (x1, y1)−Kxy

∂fy
∂x (x1, y1)−Kyx,

∂fy
∂y (x1, y1)−Kyy

)
∆t+

(
1 0
0 1

)
,

B =

(
Kxx Kxy

Kyx Kyy

)
∆t.

(13)

Note that, thanks to the linear coupling to the mean field,
the matrix A(p1) depends only on x1 and y1, and B(p1)
is a constant matrix.

We used time series of a local variable w1(t) = x1(t) +
iy1(t) and the mean field w̄(t) = x̄(t) + iȳ(t), generated
numerically by the fourth-order Runge-Kutta method
with time step ∆t = 10−3, after discarding a transient.
The length of the time series data was T = 106 (in the
unit of time step). Then we applied our method with
ε = 10−2 and evaluated the coupling constants and the
Lyapunov exponents.

B. Results

As in the previous section, by Step I, we first evaluate
the coupling constants. Taking Kxx as an example, from
Eq. (13) we obtain K̃xx(t) = B̃(p1(t))/∆t [Fig. 3(a)].
The data suggest that, compared to the previous case,
the estimates K̃xx(t) tend to meander far from the true
value Kxx = K = 0.52 for longer time. Indeed, sim-
ple time averaging now yields a totally wrong value,
〈K̃xx(t)〉 ≈ 6.08. On the other hand, we find that the
median gives a reasonable value 0.515, suggesting that
K̃xx(t) still spends much time near the true value [see
also the inset of Fig. 3(a)].

The estimation accuracy can be improved by paying
attention to the number of recurrences. Figures 3(b) and

(c) display K̃xx(t) against n(t) = |Iε(p1(t))| [panel (b)],

as well as Std[K̃xx(t)]n(t)=n [blue dots of panel (c)] and

〈K̃xx(t)〉n(t)>n (orange line) against n. These results con-

sistently show that most errors in 〈K̃xx(t)〉 are due to the

data points with only few recurrent points. Therefore, we
can improve the accuracy by setting a lower threshold for
n, denoted by ntrm, and using only the data points with
n(t) > ntrm. We shall call this operation “trimming”,
and ntrm the trimming threshold. Figure 3(c) shows

that, with ntrm ≈ 50, the mean estimate 〈K̃xx(t)〉n(t)>n
is already stable (orange line) but individual estimates

K̃xx(t) are still fluctuating (blue dots). The fluctuation
level becomes low for n & 200 or 300 [see also Fig. 3(b)],
so that these are expected to be an appropriate choice
for the value of ntrm.

Now we evaluate the Lyapunov exponents via Step II,
i.e., by emulating the phase-space and tangent-space dy-
namics. The phase-space dynamics is realized by the
time evolution equation (12), in which for the coupling
constants the values obtained previously with the trim-
ming technique are used, and the functions fx(xj , yj) and
fy(xj , yj) are evaluated by interpolation of the time se-
ries data. The tangent-space dynamics is reconstructed
by interpolating the estimates of the matrix A(xj , yj)
[Eq. (13)], while for B the obtained values of the cou-
pling constants are used. For those interpolations, we
again need to have sufficiently many neighbors around
each time-series data point. In fact, we can increase this
number in the case where we know a priori that our os-
cillators are invariant under uniform shift of the phase,
i.e., under the transformation wj(t) → wj(t)e

iθ with a
constant θ for all j. Specifically, if we are to evaluate
A(xj , yj), or equivalently A(wj), we only need to find
w1(t) from the time series data such that the modulus
|w1(t)| is close to |wj |. Then we rotate w1(t) by the an-
gle θ = argwj − argw1(t), or, more precisely, transform
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(a)

(b)

(c)

FIG. 3. Estimation of the coupling constant Kxx for
the globally coupled limit-cycle oscillators. (a,b) Estimates

K̃xx(t) shown against time t (a) and the number of recur-
rences n(t) := |Iε(p1(t))| (b). The insets are close-ups show-

ing the range 0 ≤ K̃xx(t) ≤ 1, with the true value K = 0.52
indicated by the black solid line. (c) Standard deviation of

the estimates K̃xx(t) with n(t) = n (blue dots) and the mean

of K̃xx(t) such that n(t) > n (orange line) shown against n.

A(w1(t)) to R(θ)A(w1(t))R−1(θ) with the rotation ma-

trix R(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
, and interpolate the value

on the one-dimensional number line. The interpolation
of fx(x, y) and fy(x, y) can also be done analogously, for
which we use the fourth-order central-difference formula
to evaluate ẇ1 from the time series w1(t).

Figure 4(a) shows the Lyapunov spectrum obtained

(a)

(b)

FIG. 4. The spectrum of the Lyapunov exponents λi for
the globally coupled limit-cycle oscillators. (a) The spec-
trum evaluated by the proposed method (symbols) for dif-
ferent choices of the trimming threshold ntrm. The black
line indicates the true spectrum λtrue

i obtained by the stan-
dard QR decomposition method. (b) The estimation error
∆λi := λi − λtrue

i .

by our method (symbols), with varying trimming thresh-
old ntrm, compared with the true spectrum (black line),
which is obtained by using the QR decomposition method
to the limit-cycle oscillators (10). The difference from the
true spectrum is displayed in Fig. 4(b). We can confirm
that our results reproduce the true spectrum reasonably
well.

V. CONCLUSIONS

In this work we proposed a method to evaluate the Lya-
punov exponents from time series data of large chaotic
systems with global coupling. The central idea is to han-
dle the recurrence analysis in the reduced space, which
consists only of the local variable and the mean field,
thus circumventing the usual difficulty of the lack of re-
currence points. We demonstrated the validity of our
method with two representative systems, namely the
globally coupled logistic maps and the globally coupled
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limit-cycle oscillators, and reproduced the true Lyapunov
spectrum reasonably well.

Compared to the recently proposed method based
on the machine learning technique13, the scope of our
method is certainly limited, but the advantage is that the
adjustable parameters are much fewer, specifically the
cutoff ε for the detection of recurrences and the trimming
threshold ntrm, whose physical meaning is also clear. Our
method can also be extended to other types of systems
that have a high degree of symmetry, in the sense that the
evolution of a local dynamical variable is determined by a
small number of variables. We are aware that, for apply-
ing our method to experimental systems, we also need to
incorporate the embedding technique4,9,12, as well as to
evaluate the influence of noise and inhomogeneity – im-
portant tasks left for future studies. We believe that the
results presented here make the first step on this track,
towards the realization of instability analysis of large ex-
perimental systems.
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