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When fast and slow interfaces grow together: Connection to the half-space problem
of the Kardar-Parisi-Zhang class
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We study height fluctuations of interfaces in the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) class, growing
at different speeds in the left half and the right half of space. Carrying out simulations of the discrete polynuclear
growth model with two different growth rates, combined with the standard setting for the droplet, flat, and
stationary geometries, we find that the fluctuation properties at and near the boundary are described by the KPZ
half-space problem developed in the theoretical literature. In particular, in the droplet case, the distribution at the
boundary is given by the largest-eigenvalue distribution of random matrices in the Gaussian symplectic ensemble,
often called the GSE Tracy-Widom distribution. We also characterize crossover from the full-space statistics to
the half-space one, which arises when the difference between the two growth speeds is small.
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I. INTRODUCTION

Interface growth and resulting scale-invariant fluctuations
have been an important target of nonequilibrium physics for
decades [1], but they began to take a unique position when
the paradigmatic universality class in this context, namely, the
Kardar-Parisi-Zhang (KPZ) class, turned out to be tractable by
exact solutions in one dimension [2–5]. Suppose an interface
grows upward on a one-dimensional substrate; then the growth
can be described in terms of its height profile h(x,t) at spanwise
position x and time t . If this interface belongs to the KPZ class,
h(x,t) is known to grow as

h(x,t) � v∞t + (�t)1/3χ (X,t) (1)

with a rescaled coordinate X := cx/t2/3, nonuniversal coef-
ficients v∞,�,c, and a rescaled random variable χ (X,t) that
represents the height fluctuations. The exponent values 1/3 and
2/3 in those equations characterize the (1 + 1)-dimensional
KPZ class [6,7]. The modern developments triggered by exact
studies are more concerned with finer fluctuation properties
of χ (X,t), such as its distribution function and correlation
properties [2–5]. They are also universal and were indeed
identified in experiments of liquid-crystal turbulence [8].

Among important outcomes of the recent developments
[2–5], particularly noteworthy are the facts that (i) the universal
fluctuation properties of χ (X,t) can be classified according to
the interface geometry [9], or equivalently the initial condition,
and (ii) in prototypical cases, a connection to random matrix
theory [10] was found [11]. Specifically, if an interface grows
from a single nucleus—hereafter referred to as the droplet
geometry—the asymptotic distribution is given by that of the
largest eigenvalue of random matrices in the Gaussian unitary
ensemble (GUE), called the GUE Tracy-Widom (GUE-TW)
distribution [12]. For interfaces growing from a flat substrate,
the TW distribution for the Gaussian orthogonal ensemble
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(GOE) arises. The asymptotic distribution was also obtained
for the stationary case, i.e., with the initial condition drawn
from the stationary measure, which is then given by the
Baik-Rains (BR) distribution [9,13]. These three constitute the
representative cases, sometimes called universality subclasses
of the (1 + 1)-dimensional KPZ class. Two of them are related
to prominent ensembles of random matrix theory [10].

One may then wonder if the TW distribution of the other,
equally established ensemble of random matrices, namely,
the Gaussian symplectic ensemble (GSE) [10], can arise in
the KPZ class. The answer is yes; it was theoretically found
for several semi-infinite systems with the droplet geometry
[9,11,14–19] (see also [20–22] for related studies), where
h(x,t) is defined with x � 0 and the boundary at x = 0
is either constrained by some condition or driven with a
different model parameter. To give examples, it was shown
[9,14,15] that the polynuclear growth (PNG) model with a
different nucleation rate at the origin exhibits the GSE-TW
and Gaussian distributions for small and large growth rates,
respectively, and the GOE-TW distribution at the critical
point. The GSE-TW distribution was also derived for the
KPZ equation with an absorbing wall at the origin [16] or
with ∂xh(0,t) = 0 [17] (now the condition for GSE-TW is
known to be ∂xh(0,t) = a with a > −1/2 in rescaled units
[22]). Such a half-space problem has also been studied for
the flat and stationary geometries [14,23]. However, from the
experimental viewpoint, controlling the growth rate or the
interface slope at the boundary is unrealistic in many cases. As
a result, the GSE-TW distribution, as well as other universal
properties predicted for the half-space problems, still remain
experimentally elusive.

In this work, we propose a more realistic situation to
study the half-space problem, where an interface grows in
both x < 0 and x � 0, but at different speeds in the two
regions. We implement this “biregional” setting numerically,
using the discrete PNG model with the droplet, flat, and
stationary geometries, and find the characteristic properties
of the corresponding half-space problems. In particular, the
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FIG. 1. Sketch of the time evolution rules of the discrete PNG
model. (a) An example of the interface evolution from time t (dashed
line) to t + 1 (solid line). The vertical arrows indicate elevation
by random nucleations and the horizontal arrows show plateau
expansion. The growth parameter is q = qL for x < 0 and q = qR for
x � 0. (b) When two plateaus encounter, the higher one overrides.

GSE-TW distribution is found in the droplet case, as well
as the associated spatial correlation near the boundary. If the
difference between the two growth speeds is small, a crossover
from the usual full-space statistics to the half-space one is
found. We show how this crossover is controlled by the growth
speed difference.

II. MODEL

We use the discrete PNG model and adapt it for our
biregional setting. In the following, x ∈ Z, t ∈ N0, h(x,t) ∈
N0. The initial condition is h(x,0) = 0. Time evolution is
illustrated in Fig. 1. Briefly, random nucleation occurs locally,
which increases h(x,t) at the nucleation point by a random
integer ω(x,t), and the produced projection expands laterally
at unit speed [Fig. 1(a)]. When low and high plateaus encounter,
the higher one overrides [Fig. 1(b)]. Those evolution rules are
expressed by

h(x,t + 1) = max{h(x − 1,t),h(x,t),h(x + 1,t)}
+ω(x,t + 1). (2)

Here, following Ref. [15], we consider the case in which
nucleation can occur only at even (respectively, odd) sites at
even (respectively, odd) times. If nucleation is allowed, ω(x,t)
is drawn independently from the geometric distribution with
parameter 0 � q < 1, set to be q = qL for x < 0 and q = qR

for x � 0. More explicitly, with k ∈ N0,

Prob[ω(x,t) = k] =
{

(1 − qL)qk
L, (x < 0),

(1 − qR)qk
R, (x � 0),

(3)

if x − t is odd. Otherwise ω(x,t) = 0.
The advantage of using such an alternating update is that the

scaling coefficients v∞,�,c in Eq. (1) are known analytically as
follows, in the case of the homogeneous growth q = qL = qR

[15]:

v∞ =
√

q

1 −√
q

, � =
√

q(1 +√
q)

2(1 −√
q)3

, c = q1/6

21/3(1 +√
q)2/3

.

(4)

Using these coefficients, we can define the rescaled height by

H (X,t) := h(x = Xt2/3/c,t) − v∞t

(�t)1/3
� χ (X,t). (5)

As we explain below, even if qL �= qR, the same expressions
remain valid in the region with the larger q. In the following,
we set qL � qR (growth is faster in x � 0) without loss of
generality.

Now we describe how we implement the droplet, flat, and
stationary geometries in this model.

A. Droplet

Following the standard method for the PNG model [9],
we realize the droplet geometry by restricting nucleations to
|x| � t (in addition to the alternating rule). Thereby the growth
process starts at the origin, forming a circular interface in the
homogeneous case qL = qR. If qL < qR, we obtain a deformed
interface. This is what we call the droplet case.

B. Flat

In the flat case, nucleations can occur at any sites with x − t

even. Therefore, for simulations, the system boundary must
be explicitly considered. Here we use h(±(L + 1),t) = 0 in
Eq. (2). Since we are interested in statistical properties at x = 0
and nearby, the choice of the boundary condition has little
influence as long as L is sufficiently large. Here we use L =
tmax + 2, where tmax = 104 is the final time of the simulations.

C. Stationary

Here the stationary geometry refers to the case where the
initial condition consists of a pair of stationary interfaces in the
two regions, connected at the boundary. If qL < qR, the mis-
match of the growth speeds makes the interface nonstationary.
Nevertheless, we use the term stationary, because the interface
shows characteristics of the stationary interfaces, e.g., the BR
distribution, far from the boundary.

While the initial condition described above might be di-
rectly implemented, to avoid the boundary effect, here we
adopt the method used in Ref. [9]. Specifically, we take the
droplet geometry described in Sec. II A and add an additional
nucleation term ω±(x,t + 1) to Eq. (2) at the droplet edges x =
±t . The edge nucleation also follows the geometric distribution
(3) with parameter q±, which is set to be q+ = q

1/2
R and

q− = q
1/2
L . Those values are chosen so that the generated

interface is indeed in the stationary state as defined above [5,9].

D. Limiting cases

Clearly, if qL = qR, our system becomes the standard
discrete PNG model. The asymptotic fluctuation properties are
therefore exactly known [9]. For the one-point distribution, it
is

H (X,t)qL=qR

d→
⎧⎨
⎩

χGUE − X2 (droplet),
2−2/3χGOE =: χ ′

GOE (flat),
χBR (stationary),

(6)

where χGUE, χGOE, χBR are the standard random variables of
the GUE-TW, GOE-TW, BR distributions [12,13], respec-

tively, and “
d→” denotes convergence in distribution.

In the other limiting case qL = 0, our system becomes
equivalent to the half-space PNG model [15] without bound-
ary nucleation. With other theoretically solid results for the
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FIG. 2. An example of interfaces in the flat (a) and circular
(b) geometries, with qL = 0.2 and qR = 0.25. The height profiles
recorded every 20 time steps are shown.

half-space problem [14,23], the one-point distribution at the
origin is

H (0,t)qL=0
d→

⎧⎨
⎩

21/2χGSE =: χ ′
GSE (droplet),

χGUE (flat),
χGOE (stationary),

(7)

with the random variable χGSE of the GSE-TW distribution
[12].

Between those limiting cases, 0 < qL < qR, we have the
situation where the interface grows at different speeds. This is
the primary target of the present paper.

III. RESULTS

In the following we fix qR = 0.25, and qL is varied in the
range 0 � qL � qR. We carried out simulations for the three
geometries described above. Statistical results were obtained
from 100 000 realizations for each case, unless otherwise
stipulated.

A. Height profile

Typical height profiles for the flat and droplet cases are
shown in Fig. 2. In the flat case, the interface consists of
two flat regions growing at different speeds, connected by a
slope near the boundary [Fig. 2(a)]. Interestingly, the slope
is found to be kept constant in time, although the difference
between the heights far from the boundary increases. This can
be understood by considering the noiseless version of the KPZ
equation:

{
∂h
∂t

= ν ∂2h
∂x2 + λ

2

(
∂h
∂x

)2 + vL (x < 0),
∂h
∂t

= ν ∂2h
∂x2 + λ

2

(
∂h
∂x

)2 + vR (x � 0),
(8)

where ν and λ are constant coefficients and vL < vR denote
the two growth speeds. The asymptotic solution hasymp(x,t) is

hasymp(x,t) =
⎧⎨
⎩

vRt +
√

2�v
λ

x (x < 0),

vRt + 2ν
λ

log
(
1 + λ

2ν

√
2�v
λ

x
)

(x � 0),
(9)

with �v := vR − vL. This accounts for the numerically ob-
served appearance of the constant slope at and near the
boundary.

’

’

FIG. 3. The mean and the variance of the rescaled height H (0,t)
at the boundary for the droplet case. Different colors and symbols
correspond to different values of qL, as shown in the legend of panel
(c). The horizontal lines indicate the mean and the variance of χGUE

(dashed) and χ ′
GSE (dash-dotted). The raw data in (a) and (b) are

plotted against (�q)3/2t in (c) and (d). The insets show the approach
to the GSE-TW values. To improve statistical accuracy, the data for
qL = 0.240 were obtained from 500 000 realizations. In view of the
alternating character of the updating, only data at even times are
shown.

In the droplet case, the asymptotic mean profile in
the homogeneous growth condition qL = qR = q is known
to be [15,24]

h(x,t) � v∞t

√
q +

√
1 − (x/t)2

1 + √
q

, (10)

i.e., an expanding semicircle with a rising center. Then, in
our biregional setting qL < qR, if there were no interactions
between the two regions, two quadrants of different radii would
grow. However, the same sort of interaction as for the flat case
exists, producing a similar intermediate region of a constant
slope [Fig. 2(b)].

B. Distribution at the boundary

Now we study how the interface fluctuates around the mean
profile, at and near the boundary. The result of the mean
height profile, in particular Eq. (9), suggests that this boundary
region is essentially controlled by the faster-growth region.
Therefore, the height should be rescaled by Eq. (5) with Eq. (4)
and q = qR = 0.25; specifically, v∞ = 1, � = 3, c = 3−2/3.
In this section, we study the rescaled height fluctuations at
the boundary, H (0,t).

First, the results for the droplet case are shown in Fig. 3.
Figures 3(a) and 3(b) show the mean 〈H (0,t)〉 and the variance
〈H (0,t)2〉c, respectively, with varying qL. For the two limiting
cases discussed in Sec. II D, i.e., for the homogeneous case
qL = qR = 0.250 (blue circles) and the half-space case qL = 0
(green stars), our numerical data support the expected conver-
gence to the GUE-TW and GSE-TW distributions, respectively
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FIG. 4. The mean and the variance of the rescaled height H (0,t)
at the boundary for the flat case. The horizontal lines indicate the
mean and the variance of χ ′

GOE (dashed) and χGUE (dash-dotted).

[Eqs. (6) and (7)]. The data in between correspond to the results
of our biregional setting, which seem to approach the GSE-TW
values asymptotically. Indeed, by plotting the difference from
the GSE-TW values against t [Figs. 3(c) and 3(d) insets],
we find 〈H (0,t)〉 → 〈χ ′

GSE〉 and 〈H (0,t)2〉c → 〈χ ′2
GSE〉c with

finite-time corrections ∼ t−1/3 and t−2/3, respectively.
Moreover, if qL is sufficiently close to qR [e.g., red squares

in Figs. 3(a) and 3(b)], the data first stay near the curve for
qL = qR, during which the distribution is essentially GUE-TW
(plus finite-time corrections), then cross over to the GSE-TW
values. To characterize this crossover, we tried to collapse
the data in Figs. 3(a) and 3(b) by rescaling the abscissa in
the form (�q)μt , with �q := qR − qL and some exponent
μ. The best collapse was achieved with μ = 1.4 ± 0.1. From
the theoretical viewpoint, it is reasonable to assume that this
crossover occurs when the height difference induced by the two
different growth speeds, �vt ∼ �qt , becomes comparable to
the fluctuation amplitude (�t)1/3. This gives t ∼ (�q)−3/2,
hence μ = 3/2. Our data are indeed consistent with this value
[Figs. 3(c) and 3(d)].

We also studied the flat and stationary cases and reached
analogous conclusions: for the flat case (Fig. 4) we find
a crossover from the GOE-TW to GUE-TW distributions,
and for the stationary case (Fig. 5) from BR to GOE-TW
[recall the limiting cases, Eqs. (6) and (7)]. The data are
found to be consistent with the same crossover exponent
μ = 3/2.

The one-point distribution near the boundary, X > 0, is also
of interest. In the Supplemental Material [25], we show results
for the droplet case with qL = 0, and compare with a theoretical
formula by Sasamoto and Imamura [15] for the half-space
droplet PNG without boundary nucleation (Supplemental Ma-
terial Fig. S1). The results nicely illustrate that the one-point
distribution in the droplet case crossovers from GSE-TW at
the origin to GUE-TW in the bulk (far from the boundary). An
analogous crossover, from GUE-TW to GOE-TW for the flat
case and from GOE-TW to BR for the stationary case, is also
expected.

FIG. 5. The mean and the variance of the rescaled height H (0,t)
at the boundary for the stationary case. The horizontal lines indicate
the mean and the variance of χBR (dashed) and χGOE (dash-dotted).

C. Spatial correlation

Finally we study the two-point spatial correlation function,
defined by

Cs(x,t) := 〈h(x,t)h(0,t)〉 − 〈h(x,t)〉 〈h(0,t)〉 (11)

and rescaled as C ′
s(X,t) := Cs(x = Xt2/3/c,t)/(�t)2/3. For the

homogeneous growth qL = qR, it is known that the asymptotic
spatial profile is given by the stochastic process called the Airy2
process for the droplet case [27] and the Airy1 process for
the flat case [28]. Therefore, the spatial correlation function
C ′

s(X,t) is given directly by the correlation of those processes,
for which analytical formulas are known [27,28]. For the half-
space droplet case (qL = 0), Sasamoto and Imamura’s formula
[15] describes this correlation.

Figure 6 shows our numerical results. For the droplet
case, C ′

s(X,t) is plotted in Fig. 6(a) with fixed t and varying
qL. We can confirm that the data for qL = qR = 0.250 are
in agreement with the Airy2 correlation (dashed line). The
corresponding formula by Sasamoto and Imamura is yet to
be evaluated, but since our model with qL = 0 is equivalent
to the half-space PNG studied by them, we expect that our
data show the functional form of their formula [top data set
in Fig. 6(g)]. For the biregional case 0 < qL < qR, we see
the data crossover from Airy2 to the half-space result, with
increasing �q (decreasing qL) [Fig. 6(a)] or increasing t (with
fixed �q) [Fig. 6(b)]. This crossover is again controlled by
the rescaled time (�q)3/2t , which is confirmed in Fig. 6(c)
by plotting C ′

s(X,t) for several pairs of qL and t that give the
same value of (�q)3/2t . We also tried data collapse of C ′

s(X,t)
assuming the combination (�q)μt with parameter μ. It was
a difficult task due to unavoidable influence from finite-time
effect and statistical error, but we obtained μ = 1.3 ± 0.2,
in reasonable agreement with μ = 3/2 expected from the
theoretical argument described in Sec. III B.

The same analysis is carried out in Figs. 6(d)–6(f) for the
flat case. We observe an analogous crossover from the Airy1
correlation (dash-dotted lines) to the correlation expected to
be that of the half-space flat KPZ problem [purple triangles in
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FIG. 6. The rescaled spatial correlation function C ′
s(X,t) for the droplet (a)–(c) and the flat (d)–(f) cases. In (a) and (d), t is fixed (t = 10 000)

and qL is varied. In (b) and (e), qL is fixed (qL = 0.246) and t is varied. In (c) and (f), pairs of qL and t that give the same value of (�q)3/2t

are used. The panel (g) shows the asymptotic forms of the correlation function for the half-space problem, compared with the Airy1 and Airy2

correlation for the full-space problem. The curves for the Airy2 and Airy1 processes were numerically evaluated by Bornemann [26].

Fig. 6(d) or bottom data set in Fig. 6(g)]. To our knowledge,
the latter correlation has not been studied theoretically.

IV. CONCLUDING REMARKS

In this Rapid Communication, we have proposed a “bire-
gional” situation for studying the KPZ class, where the in-
terface grows at different speeds in the left and right halves
of space. We have implemented it using the discrete PNG
model for the three representative geometries, namely, the
droplet, flat, and stationary cases, and numerically studied the
fluctuation properties at and near the boundary. As a result, we
have found that they are asymptotically well described by the
half-space problem of the KPZ class, which is characterized
by the sets of the universal statistical properties different from
those for the homogeneous, full-space problem. In particular,
the GSE-TW distribution was found for the biregional droplet
case. If the growth speed difference is small, we have found
a crossover from the full-space statistics to the half-space
one, which is controlled by the rescaled time (�v)3/2t with
growth-speed difference �v.

Our result may also be interpreted in terms of the directed
polymer in random medium, which provides one of the stan-
dard representations of the KPZ class [2–5]. In the translation
from interface to directed polymer, growth speed corresponds
to the mean depth of the random potential and the height to
the free energy of the polymer, which tends to find the optimal
path under a given random potential. Now, in our biregional
setting, the mean depth of the potential is different between
the two regions. If this gap is large enough, the optimal path is
expected to be found essentially inside the deeper half space.
The correspondence to the half-space problem is reasonable
from this viewpoint. It is also interesting to recall our finding
that the mean interface profile develops a constant slope near

the boundary. In this sense, a situation similar to imposing the
Neumann boundary condition is spontaneously realized in our
setting, providing another explanation on the correspondence
to the half-space problem. In any case, carrying out direct
theoretical analysis of the biregional KPZ problem is an
interesting open problem left for future studies. Statistical
properties other than the one-point distribution are also needed
to be investigated, such as two-time quantities, which re-
cently became tractable to some extent in full-space problems
[29–33]. It is also interesting to consider relationships to
systems with locally different growth speeds, which have been
studied in the literature [34–37].

Finally, we believe that our biregional setting has strong
experimental relevance, compared with the standard half-
space problem for which the boundary condition needs to
be controlled. A study using the liquid-crystal turbulence [8]
is ongoing. We also consider that a similar situation can be
realized in other experimental systems showing KPZ, such as
mutant bacteria colonies [38] and paper combustion [36,39].
We hope the biregional setting will be a useful platform to
investigate the KPZ half-space problem, both theoretically and
experimentally.
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