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Despite the prominent importance of the Lyapunov exponents for characterizing chaos, it still
remains a challenge to measure them for large experimental systems, mainly because of the lack
of recurrences in time series analysis. Here, we develop a method to overcome this difficulty, valid
for highly symmetric systems such as systems with global coupling, for which the dimensionality
of recurrence analysis can be reduced drastically. We test our method numerically with two glob-
ally coupled systems, namely, logistic maps and limit-cycle oscillators with global coupling. The
evaluated exponent values are successfully compared with the true ones obtained by the standard
numerical method. We also describe a few techniques to improve the accuracy of the proposed
method. Published by AIP Publishing. https://doi.org/10.1063/1.5066087

Although chaos with many degrees of freedom abounds
in a wide variety of natural systems, such as turbulence
in geophysical flows and laboratory experiments,1 chem-
ical reactions,2 and possibly cardiac arrhythmia,3 it still
remains challenging to characterize their instability in a
quantitative manner. A practical method for measuring
Lyapunov exponents is particularly called for, because the
Lyapunov exponents and related concepts are useful to
characterize various aspects of chaos, as well as for appli-
cation purposes such as chaos control.4 In this work, we
propose a method to evaluate the Lyapunov exponents
of large chaotic systems from time series, which is valid
for systems with a high degree of symmetry. Focusing
on globally coupled systems, and using a time series of a
single local variable and the mean field, we demonstrate
that our method can indeed estimate the full spectrum
of the Lyapunov exponents correctly. We expect that the
presented idea can also be extended to other types of
symmetric systems, paving the way toward experimental
investigations of instability of large chaotic systems in the
future.

I. INTRODUCTION

Instability is one of the most fundamental properties of
nonlinear dynamical systems. It is often characterized by the
Lyapunov exponents, i.e., the exponential rates of divergence
of infinitesimal perturbations given to a trajectory. The Lya-
punov exponents are also known to characterize properties
of chaotic systems other than instability, such as the met-
ric entropy and the attractor dimension.5 Moreover, for large
systems, the extensivity of chaos is defined on the basis of
the spectrum of the Lyapunov exponents.6 From the appli-
cation point of view, the Lyapunov exponents and related
objects play an important role in chaos control7 and data
assimilation.8 It is therefore not surprising that the Lyapunov
exponents have been the central quantities to investigate in
numerical studies of chaos, in which case the equation of

motion is usually given and the methods to evaluate the
exponents are established.9–11 However, experimentally, the
situation is in sharp contrast, because the equation of motion
is usually unavailable and one often needs to resort to time
series to estimate the Lyapunov exponents.

The most common experimental approach is the
following:4,9,12 (i) First, time series, say s(t), is embedded to
a space of sufficiently high dimensionality, by use of time-
delayed coordinates s(t) = [s(t), s(t − τ), s(t − 2τ), . . .]. (ii)
Recurrences of trajectories, i.e., pairs of s(ti) and s(tj) with
small ||s(ti) − s(tj)|| are detected and the growth rate of
||s(ti + t) − s(tj + t)|| is measured. Although this method
works well for systems with a small number of degrees of
freedom, it cannot be applied to large systems whose num-
ber of degrees of freedom is large (typically � 10), because
recurrence becomes extremely rare in such high-dimensional
space. Recently, Pathak et al. used a machine learning tech-
nique to time series data and succeeded in predicting tra-
jectories and even Lyapunov exponents of a large spatially-
extended system.13 This is an encouraging development, but
adjusting many parameters involved in this method, without
guiding principles, is presumably a delicate task in practice.

In this work, we choose to extend the recurrence method
and attempt to overcome the problem of the lack of recur-
rences in large systems. Here, we restrict our target to a
specific kind of systems, namely, systems with global cou-
pling, but we believe that our method can be extended to other
types of systems with a high degree of symmetry. We focus
on the fact that the evolution of a local variable does not nec-
essarily require a large number of variables; in the case of
globally coupled systems, it is determined only by the local
variable and the mean field. We therefore collect recurrences
with this local set of variables and show that it is sufficient to
construct the global Jacobian, which is necessary to compute
the full spectrum of the Lyapunov exponents. We apply our
method to two globally-coupled systems, specifically, logis-
tic maps and limit-cycle oscillators with global coupling, and
demonstrate that this method is able to evaluate the Lyapunov
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spectrum reasonably well. We also describe a few techniques
to improve the accuracy of the proposed method.

II. METHOD

Here, we describe our method for globally coupled sys-
tems in a general manner. For simplicity, it is described for
the case in which the local evolution is given by a one-
dimensional map, but generalization to higher dimensions and
to differential equations is straightforward.

Consider a globally coupled system given by

xj(t + 1) = f (xj(t), m(t)) (1)

with j = 1, 2, . . . , N , where f (x, m) is a nonlinear map, xj(t)
represents the jth local variable at discrete time t, m(t) is the
mean field given by

m(t) := 1

N

N∑
j=1

xj(t). (2)

The full Jacobian matrix for this system is

J(x1(t), . . . , xN (t))

=

⎡
⎢⎣

∂
∂x1

f (x1(t), m(t)), . . . , ∂
∂xN

f (x1(t), m(t))
...

...
∂

∂x1
f (xN (t), m(t)), . . . , ∂

∂xN
f (xN (t), m(t))

⎤
⎥⎦ . (3)

Here, note that the function f (x, m) takes two independent
arguments x and m, but since m(t) is given by Eq. (2), the
derivative in Eq. (3) should read

∂

∂xi
f (xj(t), m(t))

= δij
∂f

∂x
(xj(t), m(t)) + 1

N

∂f

∂m
(xj(t), m(t)) (4)

with Kronecker’s delta δij. An important observation here is
that the full Jacobian is determined only by the two derivatives
of the local map, ∂f

∂x and ∂f
∂m . Therefore, time series data of a

single local variable x1(t) and the mean field m(t) are actually
sufficient to reconstruct the full Jacobian matrix J .

We now describe the method. Assume that we have time
series of a single local variable x1(t) and the mean field m(t).
With p1(t) := [x1(t), m(t)]T , the total derivative of Eq. (1) is

dx1(t + 1) = [
A( p1(t)), B( p1(t))

]
dp1(t), (5)

where we define

A( p1(t)) := ∂f

∂x
(x1(t), m(t)),

B( p1(t)) := ∂f

∂m
(x1(t), m(t)).

(6)

Note that Eq. (5) is equivalent to the evolution of an infinites-
imal perturbation dx1(t) in a system with two independent
variables x1(t) and m(t), defined by Eq. (1). Therefore, we can
use the standard recurrence method for this two-dimensional
reduced space spanned by x1(t) and m(t), and obtain the 1 × 2
matrix [A( p1(t)), B( p1(t))] which we shall call the pseudo-
local Jacobian matrix. Specifically, adapting the method
proposed by Sano and Sawada14 and by Eckmann and

Ruelle,5,15 we use pairs of recurrent points p1(ti) and p1(tj),
regard dp1(t) ≈ p1(ti) − p1(tj) and dx1(t + 1) ≈ x1(ti + 1) −
x1(tj + 1), and evaluate the matrix [A( p1(t)), B( p1(t))] by
the least squares method. Importantly, here, we are able to
obtain enough recurrences because the dimensionality of this
reduced space is only two (or multiples of two if the local
variable xj(t) is multidimensional). Then, with Eqs. (4) and
(6), we obtain the Jacobian matrix (3) for the full system by
appropriately interpolating ∂f

∂x (x, m) and ∂f
∂m (x, m).

To be precise, from time series data p1(t) = [x1(t), m(t)]T ,
we evaluate the Lyapunov exponents by the following two
steps. Step I. We estimate the pseudo-local Jacobian matrix
[A( p1(t)), B( p1(t))] by recurrences of time series p1(t) in the
reduced space. To detect recurrences, we consider a small
ball of radius ε centered at a given p1(t), and obtain the set
of the indices of the recurrences, Iε(t) := {t′; ||p1(t) − p1(t

′)||
< ε}. Then, by the least squares method as described above,
we obtain an estimate of the pseudo-local Jacobian matrix,
denoted by [Ã( p1(t)), B̃( p1(t))]. Step II. We numerically emu-
late both phase-space and tangent-space dynamics by inter-
polating the functions f (x, m), ∂f

∂x (x, m), and ∂f
∂m (x, m), from

time series data for x1(t + 1) = f (x1(t), m(t)), Ã( p1(t)) ≈
∂f
∂x (x1(t), m(t)), and B̃( p1(t)) ≈ ∂f

∂m (x1(t), m(t)), respectively.
Then, the Lyapunov exponents are obtained by the standard
QR decomposition method.9–11

In the next two sections, we test our method with numer-
ically generated time series, using globally coupled logistic
maps (Sec. III) and globally coupled limit-cycle oscillators
(Sec. IV).

III. GLOBALLY COUPLED LOGISTIC MAPS

A. System

We first consider a system of globally coupled logistic
maps

xj(t + 1) = f (Xj(t)),

Xj(t) = (1 − K)xj(t) + Km(t)
(7)

with j = 1, 2, . . . , N , a coupling constant K, and the logistic
map f (x) = 1 − ax2. Then, the 1 × 2 pseudo-local Jacobian
matrix [A( p1(t)), B( p1(t))] is given by

A( p1(t)) = (1 − K)f ′(X1(t)),

B( p1(t)) = Kf ′(X1(t)).
(8)

In the following, we set K = 0.1, a = 2, and N = 200. This
corresponds to a regime of high-dimensional chaos,16 which
does not show any apparent coherence in the values of the
local variables (in particular, there is no synchronization at
least in the usual sense). We assume that we know the sys-
tem to analyze has a global coupling in the additive form, as
expressed generically by Eq. (7), but that the function f (x) is
unknown. We used time series data of a local variable x1(t)
and the mean field m(t), generated numerically after discard-
ing a transient. The length of the time series data was T = 105.
We applied our method described in Sec. II. The radius of the
ε-ball neighborhood was set to ε = 10−2.
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FIG. 1. Estimation of the coupling constant K for the globally coupled logis-
tic maps. (a) and (b) Estimates K̃(t) shown against t (a) and X1(t) (b). The
insets are close-ups showing the range −0.4 ≤ K̃(t) ≤ 0.6, with the true
value K = 0.1 indicated by the black solid line. (c) Estimates K̃(t) shown
against the number of recurrences n(t) := |Iε( p1(t))|. (d) Standard deviation
of the estimates K̃(t) with n(t) = n (blue dots) and the mean of K̃(t) such that
n(t) > n (orange line) shown against n.

B. Results

First, following Step I described in Sec. II, we evalu-
ate the coupling constant K. Using Eq. (7), we have K =
B( p1(t))/(A( p1(t)) + B( p1(t))). Therefore, from the esti-
mates (Ã( p1(t)), B̃( p1(t))) of the pseudo-local Jacobian
matrix, we obtain estimates of K,

K̃(t) = B̃( p1(t))

Ã( p1(t)) + B̃( p1(t))
. (9)

Note that, though the true coupling parameter K is a con-
stant, it is evaluated for each data point p1(t) so that K̃(t) is
a function of t.

Figure 1(a) shows K̃(t) as a function of time. By taking
the time average, we obtain 〈K̃(t)〉 ≈ 0.09998, which differs
from the true value K = 0.1 only by the order of 10−5. How-
ever, the standard deviation of K̃(t) is actually as large as 0.13,
which is also apparent from scattered data points in Fig. 1(a).

A closer look reveals that errors are anomalously large
when X1(t) ≈ 0 [Fig. 1(b)]. This is easy to understand because
f ′(X1(t)) = −2aX1(t) is then almost vanishing and so is
dx1(t + 1) given by Eqs. (5) and (8).

Therefore, the estimation of [Ã( p1(t)), B̃( p1(t))], or
equivalently that of K̃(t) and f̃ ′(X1(t)), becomes numerically
unstable for those particular data points. The remaining source
of error is the lack of recurrences. In Fig. 1(c), the estimates
K̃(t) are plotted against n(t) := |Iε( p1(t))|, i.e., the number of
the recurrence points around the data point p1(t). It is clear
that large errors are essentially originated from data points
with small n. This is quantified in Fig. 1(d), which shows how
the standard deviation of K̃(t) with a given number of recur-
rences n, denoted by Std[K̃(t)]n(t)=n, decreases with increasing
n (blue dots). We can see that the error level becomes very
low, in the order of 10−4, for n � 100. Errors are not negligi-
ble for smaller n, but even so, the number of such data points
is small enough so that the mean of K̃(t) such that n(t) > n,
denoted by 〈K̃(t)〉n(t)>n, is hardly affected by the choice of the
threshold n [orange line in Fig. 1(d)].

In any case, we obtain a reasonable estimate for the cou-
pling constant, K̃ := 〈K̃(t)〉 ≈ 0.09998. The derivative f ′(X )

is evaluated, from (8), by f̃ ′(X̃1(t)) = Ã( p1(t)) + B̃( p1(t))
with X̃1(t) := (1 − K)x1(t) + K̃m(t). Then, we carry out Step
II in Sec. II and evaluate the Lyapunov exponents. Figure 2
shows the result (blue circles), compared with the true spec-
trum (black line) which we obtain directly by applying the
QR decomposition method to the globally coupled logistic
maps. It is confirmed that our method successfully evaluated
the Lyapunov exponents in the entire spectrum.

IV. GLOBALLY COUPLED LIMIT CYCLE OSCILLATOR

A. System

For the second example, we choose a system with contin-
uous time, specifically a system of limit-cycle oscillators with
global coupling, defined as follows:

ẇj(t) = wj(t) − (1 + c2)|wj(t)|2wj(t)

+ K(1 + ic1)(w̄(t) − wj(t)) (10)

with j = 1, 2, . . . , N , complex variables wj(t), the mean field
w̄(t) := (1/N)

∑
j wj(t), a coupling constant K, and system

parameters c1, c2. To write down the pseudo-local Jacobian
matrix, it is convenient to use xj(t) := Re[wj(t)] and yj(t) :=
Im[wj(t)], and discretize time by the Euler method with time
step �t. The resulting submatrices A( p1(t)) and B( p1(t)),
which are now 2 × 2 with p1(t) := [x1(t), y1(t), x̄(t), ȳ(t)]T ,
read

A( p1(t)) =
[

1 − 3x2
1(t) − y2

1(t) + 2c2x1(t)y1(t) − K, c2x2
1(t) + 3c2y2

1(t) − 2x1(t)y1(t) + Kc1

−3c2x2
1(t) − c2y2

1(t) − 2x1(t)y1(t) − Kc1, 1 − x2
1(t) − 3y2

1(t) − 2c2x1(t)y1(t) − K

]
�t +

[
1 0
0 1

]
,

B( p1(t)) =
[

K −Kc1

Kc1 K

]
�t.

(11)

In the following, we set K = 0.52, c1 = −2.5, c2 = 3.0,
which correspond to a regime of high-dimensional chaos,17,18

and the system size is set to be N = 50. Again, the oscil-
lators are not synchronized, but distributed in the complex
plane.17,18

For the analysis, we assume that we know the target is a
system described in the following form:

ẋj(t) = fx(xj(t), yj(t)) + Kxx(x̄(t) − xj(t)) + Kxy(ȳ(t) − yj(t)),

ẏj(t) = fy(xj(t), yj(t)) + Kyx(x̄(t) − xj(t)) + Kyy(ȳ(t) − yj(t)),

(12)
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FIG. 2. The spectrum of the Lyapunov exponents λi for the globally coupled
logistic maps, evaluated by the proposed method (blue circles). The black
line indicates the true spectrum obtained by the standard QR decomposition
method.

but the functional forms of fx(x, y) and fy(x, y), as well as
the values of the four coupling constants are unknown. The
pseudo-local Jacobian matrix then reads

A(x1, y1) =

⎡
⎢⎢⎣

∂fx
∂x

(x1, y1) − Kxx,
∂fx
∂y

(x1, y1) − Kxy

∂fy
∂x

(x1, y1) − Kyx,
∂fy
∂y

(x1, y1) − Kyy

⎤
⎥⎥⎦ �t

+
[

1 0
0 1

]
,

B =
[

Kxx Kxy

Kyx Kyy

]
�t. (13)

Note that, thanks to the linear coupling to the mean field,
the matrix A(p1) depends only on x1 and y1, and B(p1) is a
constant matrix.

We used time series of a local variable w1(t) =
x1(t) + iy1(t) and the mean field w̄(t) = x̄(t) + iȳ(t), gener-
ated numerically by the fourth-order Runge-Kutta method
with time step �t = 10−3, after discarding a transient. The
length of the time series data was T = 106 (in the unit of
time step). Then, we applied our method with ε = 10−2

and evaluated the coupling constants and the Lyapunov
exponents.

B. Results

Similarly to the procedure we adopted in Sec. III, by
Step I, we first evaluate the coupling constants. Taking Kxx as
an example, from Eq. (13), we obtain K̃xx(t) = B̃( p1(t))/�t
[Fig. 3(a)]. The data suggest that, compared to the previous
case, the estimates K̃xx(t) tend to meander far from the true
value Kxx = K = 0.52 for longer time. Indeed, simple time
averaging now yields a totally wrong value, 〈K̃xx(t)〉 ≈ 6.08.
On the other hand, we find that the median gives a reasonable
value 0.515, suggesting that K̃xx(t) still spends much time near
the true value [see also the inset of Fig. 3(a)].

The estimation accuracy can be improved by paying
attention to the number of recurrences. Figures 3(b) and 3(c)
display K̃xx(t) against n(t) = |Iε( p1(t))| [panel (b)], as well
as Std[K̃xx(t)]n(t)=n [blue dots of panel (c)] and 〈K̃xx(t)〉n(t)>n

FIG. 3. Estimation of the coupling constant Kxx for the globally coupled limit-
cycle oscillators. (a) and (b) Estimates K̃xx(t) shown against time t (a) and
the number of recurrences n(t) := |Iε( p1(t))| (b). The insets are close-ups
showing the range 0 ≤ K̃xx(t) ≤ 1, with the true value K = 0.52 indicated
by the black solid line. (c) Standard deviation of the estimates K̃xx(t) with
n(t) = n (blue dots) and the mean of K̃xx(t) such that n(t) > n (orange line)
shown against n.

(orange line) against n. These results consistently show that
most errors in 〈K̃xx(t)〉 are due to the data points with only
few recurrent points. Therefore, we can improve the accu-
racy by setting a lower threshold for n, denoted by ntrm, and
using only the data points with n(t) > ntrm. We shall call
this operation “trimming,” and ntrm the trimming threshold.
Figure 3(c) shows that, with ntrm ≈ 50, the mean estimate
〈K̃xx(t)〉n(t)>n is already stable (orange line) but individual esti-
mates K̃xx(t) are still fluctuating (blue dots). The fluctuation
level becomes low for n � 200 or 300 [see also Fig. 3(b)],
so that these are expected to be an appropriate choice for the
value of ntrm.

Now, we evaluate the Lyapunov exponents via Step II,
i.e., by emulating the phase-space and tangent-space dynam-
ics. The phase-space dynamics is realized by the time evo-
lution equation (12). Here, for the coupling constants, the
values obtained previously with the trimming technique are
used, and the functions fx(xj, yj) and fy(xj, yj) are evaluated
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FIG. 4. The spectrum of the Lyapunov exponents λi for the globally coupled
limit-cycle oscillators. (a) The spectrum evaluated by the proposed method
(symbols) for different choices of the trimming threshold ntrm. The black line
indicates the true spectrum λtrue

i obtained by the standard QR decomposition
method. (b) The estimation error �λi := λi − λtrue

i .

by interpolation of the time series data. The tangent-space
dynamics is reconstructed by interpolating the estimates of
the matrix A(xj, yj) [Eq. (13)] while for B, the obtained values
of the coupling constants are used. For those interpolations,
we again need to have sufficiently many neighbors around
each time-series data point. In fact, we can increase this num-
ber in the case where we know a priori that our oscillators
are invariant under uniform shift of the phase, i.e., under the
transformation wj(t) → wj(t)eiθ with a constant θ for all j.
Specifically, if we are to evaluate A(xj, yj), or equivalently
A(wj), we only need to find w1(t) from the time series data
such that the modulus |w1(t)| is close to |wj|. Then, we rotate
w1(t) by the angle θ = arg wj − arg w1(t), or, more precisely,
transform A(w1(t)) to R(θ)A(w1(t))R−1(θ) with the rotation
matrix R(θ) := (

cos θ − sin θ
sin θ cos θ

)
, and interpolate the value on the

one-dimensional number line. The interpolation of fx(x, y) and
fy(x, y) can also be done analogously, for which we use the
fourth-order central-difference formula to evaluate ẇ1 from
the time series w1(t).

Figure 4(a) shows the Lyapunov spectrum obtained by
our method (symbols), with varying trimming threshold ntrm,
compared with the true spectrum (black line), which is
obtained by using the QR decomposition method to the limit-
cycle oscillators (10). The difference from the true spectrum
is displayed in Fig. 4(b). We can confirm that our results
reproduce the true spectrum reasonably well.

V. CONCLUSIONS

In this work, we proposed a method to evaluate the
Lyapunov exponents from time series data of large chaotic
systems with global coupling. The central idea is to handle
the recurrence analysis in the reduced space, which consists
only of a local variable and the mean field, thus circumvent-
ing the usual difficulty of the lack of recurrence points. We
demonstrated the validity of our method with two represen-
tative systems, namely, the globally coupled logistic maps
and the globally coupled limit-cycle oscillators, and repro-
duced the true Lyapunov spectrum reasonably well. It is true
that systems with global coupling, which we consider in this
work, are a specific kind of large dynamical system. How-
ever, there are real examples of such systems, as shown by
laboratory experiments of chaotic electrochemical oscillators2

and metabolic oscillations of stirred yeast cells.19 In general,
well-mixed many-component systems can often be regarded
as systems with global coupling. Those systems are potential
targets for applying our method experimentally.

Compared to the recently proposed method based on the
machine learning technique,13 which does not require a pri-
ori assumptions on the form of coupling, the advantage of
our method is that the adjustable parameters are much fewer:
specifically, the cutoff ε for the detection of recurrences and
the trimming threshold ntrm, whose physical meaning is also
clear. Our method can also be extended to other types of sys-
tems that have a high degree of symmetry, in the sense that
the evolution of a local dynamical variable is determined by
a small number of variables. We are aware that, for applying
our method to experimental systems, we also need to incor-
porate the embedding technique4,9,12 as well as to evaluate
the influence of noise and inhomogeneity—important tasks
left for future studies. We believe that the results presented
here make the first step on this track, toward the realization of
instability analysis of large experimental systems.

ACKNOWLEDGMENTS

We would like to thank R. Tosaka for useful discussions.
This work is supported in part by KAKENHI from Japan
Society for the Promotion of Science (Nos. JP16K13846,
JP16H04033, and JP25103004).

1U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge
University Press, 1995).

2W. Wang, I. Z. Kiss, and J. Hudson, Chaos 10, 248 (2000).
3E. M. Cherry, and F. H. Fenton, New J. Phys. 10, 125016 (2008).
4E. Ott, Chaos in Dynamical Systems, 2nd ed. (Cambridge University Press,
Cambridge, 2002).

5J.-P. Eckmann, and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
6D. Ruelle, Commun. Math. Phys. 87, 287 (1982).
7B. Andrievskii, and A. Fradkov, Autom. Remote Control 65, 505 (2004).
8N. Balci, A. L. Mazzucato, J. M. Restrepo, and G. R. Sell, Mon. Weather
Rev. 140, 2308 (2012).

9A. Pikovsky, and A. Politi, Lyapunov Exponents: A Tool to Explore
Complex Dynamics (Cambridge University Press, 2016).

10I. Shimada, and T. Nagashima, Prog. Theor. Phys. 61, 1605 (1979).
11G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Meccanica 15, 9

(1980).
12H. Kantz, and T. Schreiber, Nonlinear Time Series Analysis (Cambridge

University Press, 2004), Vol. 7.
13J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, Chaos 27, 121102

(2017).

https://doi.org/10.1063/1.166470
https://doi.org/10.1088/1367-2630/10/12/125016
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1007/BF01218566
https://doi.org/10.1023/B:AURC.0000023528.59389.09
https://doi.org/10.1175/MWR-D-10-05054.1
https://doi.org/10.1143/PTP.61.1605
https://doi.org/10.1007/BF02128236
https://doi.org/10.1063/1.5010300


121103-6 T. P. Shimizu and K. A. Takeuchi Chaos 28, 121103 (2018)

14M. Sano, and Y. Sawada, Phys. Rev. Lett. 55, 1082 (1985).
15J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto, Phys. Rev. A

34, 4971 (1986).
16K. Kaneko, Physica D 41, 137 (1990).

17N. Nakagawa, and Y. Kuramoto, Physica D 75, 74 (1994).
18N. Nakagawa, and Y. Kuramoto, Physica D 80, 307 (1995).
19S. De Monte, F. d’Ovidio, S. Danø, and P. G. Sørensen, Proc. Natl. Acad.

Sci. U.S.A. 104, 18377 (2007).

https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1103/PhysRevA.34.4971
https://doi.org/10.1016/0167-2789(90)90119-A
https://doi.org/10.1016/0167-2789(94)90275-5
https://doi.org/10.1016/0167-2789(94)00185-S
https://doi.org/10.1073/pnas.0706089104

	I. INTRODUCTION
	II. METHOD
	III. GLOBALLY COUPLED LOGISTIC MAPS
	A. System
	B. Results

	IV. GLOBALLY COUPLED LIMIT CYCLE OSCILLATOR
	A. System
	B. Results

	V. CONCLUSIONS
	ACKNOWLEDGMENTS

