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Abstract Tracking thesign of fluctuations governed by thé@ + 1)-dimensional Kardar-Parisi-Zhang (KPZ)
universality class, we show, both experimentally and nuzady, that its evolution has an unexpected link to
a simple stochastic model called the renewal process,estudithe context of aging and ergodicity break-
ing. Although KPZ and the renewal process are fundamendéfigrent in many aspects, we find remarkable
agreement in some of the time correlation properties, sathearecurrence time distributions and the persis-
tence probability, while the two systems can be differemther properties. Moreover, we find inequivalence
between long-time and ensemble averages in the fractioimef éccupied by a specific sign of the KPZ-
class fluctuations. The distribution of its long-time aggraonverges to nontrivial broad functions, which are
found to differ significantly from that of the renewal prosgebut instead be characteristic of KPZ. Thus, we
obtain a new type of ergodicity breaking for such systemsé witiny-body interactions. Our analysis also
detects qualitative differences in time-correlation gntigs of circular and flat KPZ-class interfaces, which
were suggested from previous experiments and simulatiarstitl remain theoretically unexplained.
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1 Introduction

The Kardar-Parisi-Zhang (KPZ) universality cldss|[26.228] is a prominent nonequilibrium class, ruling di-
verse kinds of nonlinear fluctuations in growing interfaf@8y2[46], driven particle systenis[27, 8], fluctuat-
ing hydrodynamic<[41], and so on. Particularly notewodhg recent analytical developments on the- 1)-
dimensional KPZ class, which have exactly determined a mumohits statistical properties on the solid math-
ematical basi< [27]8]. Specifically, f¢t + 1)-dimensional KPZ-class interfaces, the interface heigkit),
measured along the growth direction at lateral posixiand timet, grows as

h(X,t) ~ Vet 4 (Ft)Y3x (x,t) (1)

with parameters., andl”, a rescaled random variabteandf = 1/3 being the characteristic growth exponent
of the (1 + 1)-dimensional KPZ class [26],2]. Then the recent analytitadlies [27,8] have consistently
shown thatx (x,t) exhibits one of the few universal distribution functionslexted by the choice of the initial
condition, or equivalently the global shape of the integfad~or example, circular interfaces grown from
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a point nucleus show the largest-eigenvalue distributiorandom matrices in Gaussian unitary ensemble,
called the GUE Tracy-Widom distribution, while flat intecés on a linear substrate show the equivalent for
Gaussian orthogonal ensemble. This implies that the KPS dplits into a few universality subclasses. They
are also characterized by different spatial correlatiofions, whose exact forms are also known analytically
[27)8]. These results for the circular and flat subclasses w@roborated by direct experimental verifications
using growing interfaces of turbulent liquid crystal (L@7[49.48].

In contrast to these clear characterizations of the digidh and the spatial correlation, analytical results
on the temporal correlation remain limited, hence chaltegd12/24,18,16]. The LC experiment [48] and
numerical simulation$[25,40,45, 7] showed that the Wrrelaﬂon is also different between the circular
and flat subclasses. Firstly, the two-time correlation

C(t,to) = (h(x,t)h(x,t0)) — (h(x,1))(h(X, t0))
~ (I tot)3Cres(t /t0) (2)

was shown to decay, in its rescaled form,Ggs(t/to) ~ (t/to)~* with A = 1 for the flat case 48,25, 7]
andA = 1/3 for the circular casé [48,40,45, 7]. The latter impliesli:mC(t,to) > 0, i.e., correlation remains
strictly positive, forever, in the circular case. Seconthig persistence probabiliBy (t,tp) was also measured,
which is defined here by the probability that the fluctuatiix,t) = h(x,t) — (h(x,t)) at a fixed positiorx
never changes its sign (from the one denoted by the subjsitrifite time intervalto, t|d. This quantity was
found to show a power-law decay

Py(t,to) ~ (t/to)~ 0.7 3)

with exponentxﬂip) ~1.35< 6P ~ 1.85 for the flat interface$§ 25, 48and eﬁ” ~ 6" ~ 0.8 for the circular
ones|[40,48,45]. The latter implies divergence of the meaigtence tim%‘;0 P. (t,tp)dt in the circular case.

It has been shown that such a divergent mean leads to anahloamics such as non-ergodicity, anoma-
lous diffusion, aging, and population splitting [18133,38)]. Therefore, the above observations on the circular
KPZ subclass imply that it may also be understood in this éiheesearch. Ergodicity is a basic concept in
statistical physics and dynamical systems. It guarantesgstime-averaged observables obtained by single
trajectories converge to a constant (ensemble averagahagbes on. Ergodicity breaks down when, e.g.,
the phase space consists of mutually inaccessible redienause then single trajectories are unable to cover
the whole phase space. However, in 1992, Bouchaud [3] peapasother situation of ergodicity breaking,
where the phase space is not split, but trajectories undergpand random trapping. If the mean trapping
time diverges, trajectories cannot sufficiently explore fpinase space, however long they do. Interestingly,
in this situation named weak ergodicity breaking (WERB) [S3rtain time-averaged observables such as the
time-averaged diffusion coefficient [20/3%, 11/36, 34] ahe fraction of time occupied by a given stdtel[30,
[18/32/.33] do not converge to their ensemble average, botsbles become well-defined random variables,
described by characteristic distribution functions in giencases. The existence of such an asymptotic broad
distribution for time-averaged quantities is usually relgal as a defining property of WEB. Experimentally,
single-particle observations have indeed shown relevah®EB in macromolecule diffusion in biologi-
cal systems [51,23,50,44,)31]34] and in blinking quantuns {225, 43,42]. However, it remains unclear,
both theoretically and experimentally, how useful thesesttgpments on WEB are to characterize many-body
problems such as the KPZ class. Therefore, it is a challgrayial important issue to clarify if WEB occurs
in KPZ, and if yes, characterize the WEB of the KPZ class.

1 Throughout the papet;--) denotes the ensemble average defined over infinitely matigatens. It is independent of
x because of the translational symmetry. Therefore, foruatadn, we can take averages over positions too to achietver be
statistical accuracy, without changing its mathematiediinition.

2 In the literature, our definition dP. (t,ty) based on the ensemble average is sometimes called thevayswobability”,
in which case the term “persistence probability” is resdrf@ the probability that the sign df(x,t) — h(x,to) is unchanged
[4]. However, in the present paper, we define our persistpratgability by the ensemble average (unless otherwisalatigd),
following earlier studies of direct relevance.

3 6P < 6" holds when the underlying KPZ nonlineariy(Th)?2 is positive, otherwise the order is reversed [25]. Note also
that the estimates obtained [n[25] are somewhat differamh those from the LC experiment [48]. We believe this is bsea
of the different choice of the reference tirie while it was taken to be right after the initial condition [B5], times in the
asymptotic KPZ regime were used in the LC experiment [48]s Thalso the choice of the present paper; therefore, here we

refer to the estimates from the LC experime@fﬁ) ~1.35 andefp) ~ 1.85, as the values of the persistence exponents for the
flat KPZ subclass.
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2 Our approach

To investigate possible relationship between WEB and KRZ¢@nstruct a dichotomous process from height
fluctuations of KPZ-class interfaces(x,t) = signdoh(x,t)], which is then regarded as a time series. Such
dichotomization has recently been used to characterize-tionrelation properties of interactions on lipid
membranes [82,53] and of turbulenc¢el[22,21], successflithg constructed process is compared with a
theoretically defined dichotomous process, arguably tplsist and best-studied one, hamely the renewal
process (RP)[15]0,18]. RP consists of a single two-statahla, which switches from one to the other state
after random, uncorrelated waiting times generated by septaw distribution:

-6
p(7) = Prohwaiting time> 1] = <TL0>’ (T >10). 4)

This model shows WEB and aging fo<06 < 1 [15]9[18,38].

Concerning KPZ-class interfaces, we use the experimeiatal df the circular and flat interfaces ob-
tained in Refs.[[49,48] (LC turbulence): for the circular (tat) case, total observation time wag; =
30.5s (639, time resolution wades= 0.55(0.359, andN = 955 (1128 realizations were used, respec-
tively. We also analyze newly obtained numerical data focudar interfaces of the off-lattice Eden model
[45] (Tt = 500Q Tres = 1,N = 5000) and flat interfaces of the discrete polynuclear graid®PNG) model
(Tiot = 10%, Tres= 0.1,N = 10%). Further descriptions of the systems and parameterseee g{Appendix A.

3 Results
3.1 Circular interfaces

First of all, we stress that RP is far too simple to fully déseiKPZ, because RP is a two-state model without
even spatial degrees of freedom and has uncorrelated g/tities. We nonetheless measure the waiting times
between two sign changes ok, first for the circular interfaces, for which we anticipagation to WEB as
discussed above. More specifically, we define the waitimgdlistributionp.. (7;t) by the probability that the
sign renewed at time(changed to the subscripted one) lasts over time lengttionger, hence. (7;t) is the
complementary cumulative distribution function (ccdfigire[d shows the results for both the LC experiment
(main panels) and the Eden model (insets). Remarkably,tindases we find a clear power law as described
in Eq. (@) with exponen® = 0.8, while the cutoffry is out of the range of our resolution.

This similarity to RP leads us to compare further statisficaperties between the two systems. First we
focus on the forward recurrence timgt), defined as the interval between titnend the next sign change, as
well as the backward recurrence timgt), which is the backward interval frotrto the previous sign change
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Fig. 2 Distributions (pdfs) of the forward (a,b) and backward Yagturrence times; and 1y, respectively, for the circular
interfaces at differerttin the LC experiment (main panels) and the Eden model (ipsgtandt, are rescaled by. The black
lines indicate RP’s exact results, Edd. (5) ddd (6), Witk 0.8. The data are normalized so that they have the same sfaltisti
weight as RP’s exact results in the range covered by thegisgas The same set of colors/symbols aglused in all panels.
Note that data a@t= 25s are not shown far because the remaining time is then too short to measurestréodtion of 5.

[18/14[15]. For RP, Dynkiri[14,71.8] derived exact forms af firobability density function (pdf) af(t) and
Tp(t) as follows, for 0< 6 < 1:

- sinmo@ 1
pdf(tt) = T ﬂ9(1+ﬁ)7 (5)
pdlf(fo) = Br_po(fo) = S0 7 -6(1 £,)01, ©)

with 7 = 1¢/t, Tp = Tp/t andBap(x) denoting the pdf of the beta distribution. Although theiridetion essen-
tially relies on the independence of waiting times in RP,adee not shared with KPZ, we find, as shown in
Fig.[2, that both experimental and numerical results forciheular interfaces precisely follow RP’s exact re-
sults indicated by the solid lines (except finite-time coti@ns). Note that the persistence probabiRtyt, to)
considered in Eq[{3) actually amounts to the ccdfiftp), i.e.,P.(t,tg) = ftfto pdf(t:(tp))dt;. This indicates
that the functional form of the persistence probabilityjeitis usually intractable for such spatially-extended
nonlinear system$[4], seems to be given by RP’s exact r@ut the case of the circular KPZ subclass. We
also remark that the explicit dependence of the pdfsiodicates the aging of the system.

In contrast to this agreement, we also find statistical ptoggethat are clearly different between the two
systems. The occupation tinie, i.e., the length of time spent by the positive sign, is a gityawell-studied
in two-state stochastic processes[30, 18] and in more gkseale-invariant phenomena (see, e.gl, [11]). Itis
simply related to the time-averaged sign= (1/T) fOT o(xt)dt by 0 = 2T, /T — 1. For RP with 0< 6 < 1,
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Fig. 3 Time-averaged sign distribution (a) and sign correlationcfion (b) for the circular interfaces. (a) Pdf of the time-

averaged sigw = (1/T) foT o(x,t)dt for the LC experimentT = 7.5515530.5s for circles, squares, and diamonds, respec-
tively) and the Eden modeT (= 5000), compared to the Lamperti distributigh (7) wéth= 0.8 (dashed line). The gray vertical
line indicates the ensemble-averaged vdlme= —0.021. The existence of the broad asymptotic distributiondsect evidence

of WEB in the circular KPZ subclass. (b) Correlation funatiaf sign,Csign(t,to) = (0 (x,t)0(X,t0)), measured at differeig for

the LC experiment (main panel) and the Eden model (inse®.ddshed and dotted lines indicate exponemts= —1/3 and
—6 = —0.8, respectively.

Lamperti [30] showed that it does not converge to the enserabérage, but remains stochastic even for
T — oo, with its pdf derived exactly as follows [80,18]:

_ (2sinmf /) (1— g2)0-1
PO = 157+ (16 )% + 2(cosn) (1-3)°

This distributional behavior of the time-averaged sign @ear evidence of WEB in RP. The corresponding
pdfs obtained at differerf for the circular KPZ interfaces [Fi@] 3(a) symbols] inderdicate an asymptotic
broad distribution, demonstrating thatremains stochastic and does not converge to the ensemsbgave
(o) = —0.021 (determined by the GUE Tracy-Widom distribution) shdayrthe gray vertial line in Fid13(a).
This demonstrates that KPZ indeed exhibits WEB, at leaghicircular case. On the other hand, the found
distribution is clearly different from the Lamperti’s onerfRP with & = 0.8 (black dashed line). We find
instead a nontrivial distribution universal within theaitar KPZ subclass, as supported by good agreement
between experiments and simulations (symbols and turgsaikd line).

Another quantity of interest is the correlation functiorsadn, Csign(t,to) = (a(x,t)0(X,tp)). This can be
expanded by the generalized persistence probalfllity(t,to), i.e., the probability that the sign changes
times betweety andt (hencePy o(t,to) = Px(t,t0)):

(7)

(—1)"Py n(t,to), (8)

M s

Gsign(t,to) = Z P (to)

n=0

wherePy (tp) denotes the probability that fluctuationgetiake the sign indicated by the subscript. For RP with
0< 8 < 1, one can explicitly calculate the infinite sum of Hd. (8) abtainCsign(t,to) ~ 5 + P+ (to)Ps o(t, to) ~

(t /to)_‘e [18]. In contrast, for the circular KPZ interfaces, we finétBsign(t,to) decays a€sign(t,to) ~ t=2
with A = 1/3 [Fig.[3(b)] (see also footnolé 4), in the same way as theatedcorrelation functioReg(t /to)
does [Eq.[(R)]. Since the relationl (8) holds generally Bad(t,to) = j{fto pdf(:(to))dt; is alike, the differ-
ence from RP should stem froRy ,~1(t,to), which encodes correlation between waiting times. For RE, o
can show

At=2941 for At < to,

9
At—° for At > to, ©)

Pi n>1(to+ At,tg) ~ {

with to, At > 10 (see[ Appendix B). Now, for the circular KPZ interfaces, theeuits in Fig[# show that the
long-time behavior seems to be consistent with that & REt the short-time behavior for oadshows faster

4 For some quantities the asymptotic decay is only reachetégumerical data, obtained with longer time.



(a) LC circ. at 7, = 4s, + sign (b) LC circ. at 7, = 4s, — sign

10° - 10° -
~ [ [
<L [ n=1
2“ L © : gagnn L © zgsnn
xr AL " 1 ]
BwE T % 0'E e L
= n=30 & 20+ o 42041
Q‘ ) n=4A4A . ’ A .
107 EE— 107 S
107" 10° 10! 107" 10° 10!
At/ t, At/ t,
O(c) Eden at 7, = 101, + sign O(d) Eden at 7, = 101, —sign
10 T 10 T
c
-
T 102
(=}
=
<
5
R
10
107

At/ t,

Fig. 4 Generalized persistence probabilities(to + At,tg) of the circular interfaces, measured for the positive (armj
negative (b,d) fluctuations (signfatis used) in the LC experiment (a,b) and the Eden model (clt§.dashed and dotted lines
indicate exponents-26 +1 = —0.6 and—0 = —0.8, respectively. The same set of colors/symbolsraigdused in all panels.

decay than that of RP (after the initial growth, which ocatat < n'/® 1, for RP; se¢ Appendix|B). In other
words, Py n(tg + At,tg) has heavier weight in the short-time regime for edd his difference from RP gives
nontrivial contribution to the sum in Eq.](8), which is absfam RP. We consider that this is how the different
behavior of the correlation function arises, which capufer KPZ, the characteristic time correlation of the
(non-binarized) KPZ-class fluctuations.

3.2 Flat interfaces

Now we turn our attention to the flat interfaces. Fidure 5 shdve waiting-time distribution (ccdf).(7;t)

for the flat LC experiment (main panels) and the dPNG modsk(s). At short waiting times, we identify
power-law decay with exponent0.8. This exponent seems to be different frer2/3 previously observed
for a related quantity in the KPZ stationary statel[R%jut is identical to the one we found for the circular
interfaces (Figl11). For the flat interfaces (Hif). 5), howetlis power law is followed by another one with
larger (in magnitude) exponent for longer waiting timesjalimow takes different values between positive
and negative fluctuations. The measured exponents do notteeesach their asymptotic values within our
observation time, increasing gradually withbut they are clearly asymmetric with respect to the sigaharp
contrast with the exponent for the shorter waiting timesotlie circular interfaces. Moreover, (7;t) taken

at differentt overlaps when it is plotted againstt (Fig.[3). This indicates that the value pkeparating the

5 The exponent measured [n_[25] was about the persistencefgtiop of the sign ofAh(x,t) — Ah(x,to) with Ah(x,t) =
h(x,t) — ij h(x,t)dx/L, whereas we measure here the waiting-time distributiortherpersistence probability of the sign of
oh(x,t) = h(x,t) — (h(x,t)) with the conditiondh(x,tg) = 0. Although both probabilities concern the first return toozehe
different definitions may lead to different exponent values



Fig. 5 Waiting-time distributions (ccdfg). (T;t) againstr /t for the flat interfaces, obtained at different the LC experiment
(main panels) and the dPNG model (insets). The dashed atetldistes are guides to the eyes, indicating exponentsdebel
alongside, though for the dotted lines we expect larger asytic exponents (see text). The same set of colors/synamalsis

used in both panels.
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two power-law regimes is not constant, but grows witlshowing the aging property of the waiting-time

distribution.



These results on the flat-KPZ waiting-time distributiondass to introduce a variant of RP with two
power-law regimes, called hereafter the 2-step RP nfhdel

-0
T
<—> forp<71<t,
To

)" weer

We then solved it numerically with = 0.8, /. = 1.2, 8’ = 1.5 (as observed experimentally) in the following
way: First, the initial sign was chosen to be eitheor — with the equal probability. The first waiting time
was generated according po.(T;t) = (1/70) % (T > 10), because EqL{10) is invalid for= 0. Subsequent
waiting times were generated by EQ.](10), until the time (alative sum of waiting times) exceeds the
recording timeT,;. We sampled 1Dindependent realizations to investigate statistical @rigs of this 2-step
RP model.

Now we compare this 2-step RP model and the flat KPZ interf&ggarel6 shows the forward and back-
ward recurrence-time distributions. We find that these tjties for the flat KPZ interfaces are reproduced by
the 2-step RP model reasonably well, similarly to thoseterdircular interfaces found in agreement with the
standard RP. Aging of the recurrence-time distributioral$® clear in both cases. Note however that, while
pdf(e) ~ Tf‘e is known to hold for the standard RP [EfQ] (4)] with<16 < 2 [18], our 2-step RP rather indi-
6.

p+(T;t) = (10)

cates pdft;) ~ T; - [dotted lines in Figib(a,b)]. Since pdf) is given by the derivative of the persistence
)

probability, this impliesd. = 6.7, hence asymptoticallg, = 1.35 and6’ = 1.85 are expected for the flat
KPZ subclass.

In contrast to this agreement in the recurrence-time digions, the distribution of the time-averaged sign
o= (1/T) foT o(x,t)dt turns out to be different between the flat KPZ subclass an@-tep RP [Fid17(a)],
analogously to the results for the circular interfaces. &specifically, both the flat KPZ subclass and the
2-step RP are found to show asymptotic broad distributiBitg[[d(a)], hence both of them exhibit WEB, but
the distributions are again clearly different between the systems. Note here that the time-averaged sign
distribution for the standard RP [Edl] (4)] with> 1 becomes infinitely narrow in the limit— oo [18]; this
is however not the case here, desgiite> 1. The existence of the broad distribution results from tiegof
the waiting-time distribution, i.e., from the fact that tti@ssover time in the waiting-time distribution grows
with t [see Fig[h and EqL(10)].

The difference between the flat KPZ subclass and the 2-steig RBo detected in the correlation func-
tion of sign, Csign(t,to) = (0 (X,t)0(X,tp)): while our simulations of the 2-step RP sh@gn(t,to) ~ t—6
[Fig. [A(b)], for the flat interfaces it decays &5 with A = 1 [Fig.[d(c,d)], the characteristic exponent for
the decorrelation of the flat KPZ subclass [see Ef. (2)]. iryito the circular case, this difference re-
sults from correlation of waiting times, which can be chéedzed by the generalized persistence probability
Py n(to+ At,to). For the 2-step RP, i.e., in the absence of correlation, weenically find [Fig[8(a,b)]

At=2941 for At < to,

, 11
At for At>>to, (11)

Pin>1(to+At,to) ~ {

where in the latter case the two double signs are set to bathe sign for even and the opposite ones for odd
n. This long-time behavior can also be seenin the flat KPZ sisisdFig[8(c,d) for the LC experiment and (e,f)
for the dPNG model]. In contrast, short-time behaviolPgf,>1 is found to be different between the 2-step
RP and the flat KPZ subclass [compare data and the dashednifégs [8(c-f)], the latter carrying heavier
weight in the short-time regime. Analogously to the circudase, such pronounced short-time behavior of
P n>1 seems to generate, via EQl (8), the characteristic decayedfdrrelation functioCsign(t,to) slower
than that of the 2-step RP [Figl. 7(b)].

6 Strictly, since the evolution of the 2-step RP model [[Eq)[B@pends on, it is not in the scope of the models considered
in the renewal theory.
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Fig. 7 Time-averaged sign distribution (a) and sign correlatiamcfion (b-d) for the flat interfaces (a,c,d) and the 2-stép R
(b). (a) Pdf of the time-averaged sign= (1/T)jbT o(x,t)dt for the LC experimentT = 15530563s for circles, squares,
and diamonds, respectively) and the dPNG modle=(10000; turquoise line), compared to numerical data for tHstep RP
(T = 107; dashed line). The gray vertical line indicates the enserabkraged valugo) = —0.0316. The existence of the broad
asymptotic distribution is a direct evidence of WEB in theé K#Z subclass, but in the form different from that of the alex
case. (b-d) Correlation function of sigBsign(t,to) = (0 (X, )0 (X o)), at differentty for the 2-step RPTot = 10°) (b), the LC

flat interfaces (c), and the dPNG model (d). The dashed Im#sei panels (c,d) indicate the exponekt = —1, while the dotted
line in the panel (b) shows 6/, = —1.2.

4 Concluding remarks

We have shown an unexpected similarity between sign resefidéhe KPZ-class fluctuations and RP, studied
in the context of aging phenomena and WEB. Despite the fuedgahdifference between the two systems,
we found, for the circular interfaces, that the KPZ waitimges obey simple power-law distributions identical
to those defining RP, while those for the flat interfaces apwed to its straightforward extension with two
power-law regimes [Eq[{10), the 2-step RP model]. Furthemtjtative agreement has been found in the
recurrence-time distributions (Figs. 2 add 6), from whioh agreement in the persistence probability follows.
These quantities have remained theoretically intractabléPZ, but now, following the agreement we found,
their precise forms are revealed for the circular intergatieanks to the exact solutions for the original RP.
This also implies that recurrence-time statistics may Herdened independently of the intercorrelation of
waiting times, contrary to the usual beliefs.

The correlated waiting times of KPZ otherwise generateaittaristic aging properties of the KPZ-class
fluctuations (Figd.13 and 7), especially their broad asytipttistributions of the time-averaged sign. This
indicates WEB of the KPZ-class fluctuations, which turnetitoube different from that of RP, and in fact
also from other types of WEB, known from the studies of singgeticle observations. We therefore consider
that the WEB found in this study is of a new kind, charactarisft many-body problems governed by the
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Fig. 8 Generalized persistence probabilitRsy(t,tp) for the 2-step RPTt = 10°) (a,b) and for the flat KPZ-class interfaces
[LC experiment (c,d) and dPNG model (e,f)], measured fopthstive (a,c,e) and negative (b,d,f) signs. The dashed limall
panels indicate the exponenR6 + 1 = —0.6 found in the short-time regime\{ < tp) of the 2-step RP. The dotted and dot-
dashed lines are guides for the eyes indicating exporefitsand—6’ , respectively, which characterize the long-time regime
for the 2-step RP [see Eq.{11)]. The same set of colors/sigamain is used in all panels.

KPZ universality class. This also implies that RP cannot peoay for the full KPZ dymamics; instead RP
reproduces only some of the time-correlation propertidsR¥Z, surprisingly well, though.

In fact, such a partial similarity to RP was also argued infhst for the fractional Brownian motion
(FBM), in the context of linear growth processes. Krug efiz8] showed, for the stationary state of linear
growth processes, that the stochastic probess) — h(x,tp) is equivalent to FBM. Its first-return time (cor-
responding to the waiting time of its sign) is then charazest by a power-law distribution with exponent
6 = 1— (B [19/10[28] withp being the growth exponent, or the Hurst exponent of FBM. Cetlal. [6] then
suggested that the sign of FBM would form RP, showing nunagédbservations of its persistence probability
as a partial support, but it turned out later that the two reiehave differently in other statistical quantities
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[17], because of the intercorrelation of waiting times. lr gontribution, we studied the growth regime of
nonlinear growth processes in the KPZ class and comparegighef the stochastic procelsg, t) — (h(x,t))

with RP. As already summarized, we showed thereby preciseawent in the waiting-time distribution and
the persistence probability, but not in the other statidtiroperties we studied. Understanding the mecha-
nism of this partial agreement is an important issue leffditure studies, all the more because no theoretical
understanding has been made so far on persistence prepartiee KPZ growth regimé [4]. Such develop-
ments will also help to understand the deviations from RR¢lvive believe carry characteristic information
of underlying growth processes (recall our results on theetation function). We hope this direction of
analysis may afford a clue to elucidate hitherto unexpltimae-correlation properties of the KPZ class. We
also believe that our approach may be useful to charactetiwes scale-invariant processes such as critical
phenomena.
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work is supported in part by KAKENHI from JSPS (No. JP257(0%@8d No. JP25103004), the JSPS Core-to-Core Program
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25915.

Appendix A Studied systems

In this appendix we briefly describe the three systems dilidi¢his paper, namely the LC experiment][43,48], the dffida
Eden model[[45], and the dPNG model, all known to be in the KREs: The experimental results are obtained from the raw
data acquired in Refd,_[49,48]. The readers are referredeset publications for the complete description of the erpantal
system.

Appendix A.1 LC experiment

The experiment concerns fluctuating interfaces betweentimmilent regimes of electrically driven nematic liquid/stal,
called the dynamic scattering modes 1 and 2 (DSM1 and DSMpewtively) [47.409.48]. The DSM1/DSM2 configuration can
be argued to lie in pure two dimensidisso the interfaces in between are one-dimensional. Undécisntly high applied
voltage, here 26V, DSM2 is more stable than DSM1, and thefades grow until the whole system is occupied by DSM2.
The initial nucleus of the DSM2 state can be introduced byshg laser pulses. This allows us to study both circular fatd
growing interfaces: circular interfaces grow from a pointieus generated by focused laser pulses, while flat inesfariginate
from a linear region of DSM2, created by linearly expandestigpulses.

In Refs. [49.48], Takeuchi and Sano measured 955 circularfates over time length 3s and 1128 flat interfaces over
63s, and found the characteristic statistical propertiéseocircular and flat KPZ subclasses, respectively. In tiesgnt study,
we employ the same data sets which are guaranteed to beldhgs® subclasses, and analyze the sign of the height fluctua-
tions as explained in the main text. The sign renewals amectit at every 8s and (85s for the circular and flat interfaces,
respectively.

Appendix A.2 Off-lattice Eden model

Numerical data for circular interfaces are obtained with ¢ff-lattice Eden model, the version introduced in Ref] @hich is
sometimes called the off-lattice Eden D model. While dethillescriptions can be found in R&f.[45], in this model, daes
with a round particle of unit diameter placed at the origitvad-dimensional continuous space. At each time step, ardoraly
chooses one of thd existing particles, and attempts to put an identical plertiext to it in a direction randomly chosen from
the rangg0,2m). If the new particle does not overlap any existing particiess added as attempted, otherwise the particle is
discarded. Time is then increased by/N, whether the attempt is adopted or not. Particles withoatigh adjacent space, to
which no particle can be added any more, are labelled ir@etind excluded from the particle countér(but can still block
new particles). Since we are interested in the interfacspecifically the outermost closed loop of adjacent pagigbarticles
surrounded by the interface are also marked inactive adietidikewise. This model was previously shown to belonghto t
circular KPZ subclass$[45]. The data presented in the ptesgyer are newly obtained from 5000 independent simulatagn
time length 5000, and the sign renewals are detected at gwsyunit.

7 This is because the DSM2 state, known to consist of densédygled topological defects, needs to break surface aimghor
on the bottom and top plates to be sustained in the system.
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Appendix A.3 dPNG model

Numerical simulations of flat interfaces are performed whith dPNG model. This is a discretized version of the PNG model
which is one of the exactly solvable models in tfie+ 1)-dimensional KPZ clas$ [37]. The evolution of the heightiaile
h(x = iAx,t = nAt) of the dPNG model, with non-negative integérs n, is given by the following equation:

h(x,t + At) = max{h(x— Ax,t),h(x,t),h(x+ Ax,t) } + n(x,t), (12)

wheren (x,t) is an independent and identically distributed random éeigenerated from the geometric distribution, Rrpk-
k) = (1— p)kpwith p= pAxAt. The original PNG model with nucleation rgteand nucleus expansion rae/At is retrieved
by the continuum limitAx — 0 andAt — 0.

In our study, we sgb = 2, Ax = At = 0.1 and the periodic boundary condititfL,t) = h(0,t) with L = 10* (or 1 lattice
units). We start from the flat initial conditidn(x, 0) = 0 and evolve the system urtti= 10* by 10* independent simulations. The
sign renewals are detected at every time step Ate= 0.1 time unit. Note that the dPNG model witlx = At = 0.1 shows the
same universal statistical properties as the original PN@eh provided that the height varialiiéx, t) is appropriately rescaled
using non-universal scaling coefficients,[and” in Eq. [3)]. The values of the scaling coefficients depend\arandAt: for
example, they are estimatedvat~ 2.2408 and™ ~ 1.571 for the dPNG model studied here (the evaluation methedribed
in Ref. [48] is used), while the values for the original PNGdab(corresponding téx, At — 0) areve, = 2 andl” = 1.

Appendix B Generalized persistence probability for RP

Here we derive two asymptotic behaviors of the generalizadigtence probability for the renewal process with a pdesr
waiting-time distribution. We assume Eff] (4) with< 1 for the waiting time distribution. Thus, the Laplace trfans of the
probability density function (pdf) of waiting timess p(1) = p/(1), is given by
pls)=1-as"+0(s), (13)
witha=T(1— e)rg [18]. The generalized persistent probability can be repres] by
Pa(to + At,tg) = ProbAt, < At;to] — ProbAt,1 < At;to], (14)
where ProfAt, < At;tg] is the probability that\t, = 1¢(to) + T2 + - - - + Tn < At holds, with waiting times; and the forward

recurrence timeas(tp) (time elapsed fronty to the first renewal event since then). For 1, the double Laplace transform of
Ph(to + At,to) with respect tdg andAt can be calculated as follows:

Bu(s.u) = /O /0 Pa(to + At, to)e~ S0~ dtodAt

fe(us)pu)"?t  fe(us)p)
u

R (15)

where fz (u;s) is the double Laplace transform of ef(to); to), given by [18]

fE(u;s)z/(; /0 pdf(ts;t0)e U~ Soddtg
1

_ p(u)—p(s)
T os—u 1-p(s)° (16)

Therefore,

Arisu) = PR g a0, a

Now we consider the following two asymptotic limits. Ror s < ro’l (10 < tg < At), we obtain
5 1 61
Pa(s,u) ~ =au” -, (18)

where we used approximatigh(u)"* ~ 1 —a(n— 1)u® ~ 1. In other wordsu is so small thaa(n — 1)u® < 1, i.e., At >
(n—1)%91y ~ n'/814. Then the inverse Laplace transform yields

At P
Pn(to+At,to)z<T—0> , (19)

for To < tg < At andAt > n/f15. We note that this asymptotic behavior does not depertg oar n. In contrast, fols < u <
o (10 < At < o),

A 1
Pa(s,u) ~ S—eauze’z, (20)
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where we used the same approximation as in the previous Tasénverse Laplace transform then yields

ril—o ~146 s g4\ —20+1
P (to + At, tg) =~ W (%) (T—D (21)

for n'/91y < At < to. This asymptotic behavior is independenndiut does depends as
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