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Abstract Tracking thesign of fluctuations governed by the(1+1)-dimensional Kardar-Parisi-Zhang (KPZ)
universality class, we show, both experimentally and numerically, that its evolution has an unexpected link to
a simple stochastic model called the renewal process, studied in the context of aging and ergodicity break-
ing. Although KPZ and the renewal process are fundamentallydifferent in many aspects, we find remarkable
agreement in some of the time correlation properties, such as the recurrence time distributions and the persis-
tence probability, while the two systems can be different inother properties. Moreover, we find inequivalence
between long-time and ensemble averages in the fraction of time occupied by a specific sign of the KPZ-
class fluctuations. The distribution of its long-time average converges to nontrivial broad functions, which are
found to differ significantly from that of the renewal process, but instead be characteristic of KPZ. Thus, we
obtain a new type of ergodicity breaking for such systems with many-body interactions. Our analysis also
detects qualitative differences in time-correlation properties of circular and flat KPZ-class interfaces, which
were suggested from previous experiments and simulations but still remain theoretically unexplained.

PACS 89.75.Da· 05.40.-a· 02.50.-r· 64.70.qj

Keywords Growth phenomenon· Scaling laws· KPZ universality class· Renewal theory· Stochastic
process· Weak ergodicity breaking

1 Introduction

The Kardar-Parisi-Zhang (KPZ) universality class [26,2,27,8] is a prominent nonequilibrium class, ruling di-
verse kinds of nonlinear fluctuations in growing interfaces[26,2,46], driven particle systems [27,8], fluctuat-
ing hydrodynamics [41], and so on. Particularly noteworthyare recent analytical developments on the(1+1)-
dimensional KPZ class, which have exactly determined a number of its statistical properties on the solid math-
ematical basis [27,8]. Specifically, for(1+1)-dimensional KPZ-class interfaces, the interface heighth(x, t),
measured along the growth direction at lateral positionx and timet, grows as

h(x, t)≃ v∞t +(Γ t)1/3χ(x, t) (1)

with parametersv∞ andΓ , a rescaled random variableχ, andβ ≡ 1/3 being the characteristic growth exponent
of the (1+ 1)-dimensional KPZ class [26,2]. Then the recent analytical studies [27,8] have consistently
shown thatχ(x, t) exhibits one of the few universal distribution functions, selected by the choice of the initial
condition, or equivalently the global shape of the interfaces. For example, circular interfaces grown from
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a point nucleus show the largest-eigenvalue distribution of random matrices in Gaussian unitary ensemble,
called the GUE Tracy-Widom distribution, while flat interfaces on a linear substrate show the equivalent for
Gaussian orthogonal ensemble. This implies that the KPZ class splits into a few universality subclasses. They
are also characterized by different spatial correlation functions, whose exact forms are also known analytically
[27,8]. These results for the circular and flat subclasses were corroborated by direct experimental verifications
using growing interfaces of turbulent liquid crystal (LC) [47,49,48].

In contrast to these clear characterizations of the distribution and the spatial correlation, analytical results
on the temporal correlation remain limited, hence challenging [12,24,13,16]. The LC experiment [48] and
numerical simulations [25,40,45,7] showed that the temporal correlation is also different between the circular
and flat subclasses. Firstly, the two-time correlation function 1

C(t, t0)≡ 〈h(x, t)h(x, t0)〉−〈h(x, t)〉〈h(x, t0)〉

≃ (Γ 2t0t)1/3Cres(t/t0) (2)

was shown to decay, in its rescaled form, asCres(t/t0) ∼ (t/t0)−λ̄ with λ̄ = 1 for the flat case [48,25,7]
andλ̄ = 1/3 for the circular case [48,40,45,7]. The latter implies limt→∞ C(t, t0)> 0, i.e., correlation remains
strictly positive, forever, in the circular case. Secondly, the persistence probabilityP±(t, t0) was also measured,
which is defined here by the probability that the fluctuationδh(x, t)≡ h(x, t)−〈h(x, t)〉 at a fixed positionx
never changes its sign (from the one denoted by the subscript) in the time interval[t0, t]2. This quantity was
found to show a power-law decay

P±(t, t0)∼ (t/t0)
−θ (p)

± (3)

with exponentsθ (p)
+ ≈ 1.35< θ (p)

− ≈ 1.85 for the flat interfaces [25,48]3 andθ (p)
+ ≈ θ (p)

− ≈ 0.8 for the circular
ones [40,48,45]. The latter implies divergence of the mean persistence time

∫ ∞
t0

P±(t, t0)dt in the circular case.
It has been shown that such a divergent mean leads to anomalous dynamics such as non-ergodicity, anoma-

lous diffusion, aging, and population splitting [18,33,38,39]. Therefore, the above observations on the circular
KPZ subclass imply that it may also be understood in this lineof research. Ergodicity is a basic concept in
statistical physics and dynamical systems. It guarantees that time-averaged observables obtained by single
trajectories converge to a constant (ensemble average) as time goes on. Ergodicity breaks down when, e.g.,
the phase space consists of mutually inaccessible regions,because then single trajectories are unable to cover
the whole phase space. However, in 1992, Bouchaud [3] proposed another situation of ergodicity breaking,
where the phase space is not split, but trajectories undergolong and random trapping. If the mean trapping
time diverges, trajectories cannot sufficiently explore the phase space, however long they do. Interestingly,
in this situation named weak ergodicity breaking (WEB) [3],certain time-averaged observables such as the
time-averaged diffusion coefficient [20,35,1,36,34] and the fraction of time occupied by a given state [30,
18,32,33] do not converge to their ensemble average, but themselves become well-defined random variables,
described by characteristic distribution functions in simple cases. The existence of such an asymptotic broad
distribution for time-averaged quantities is usually regarded as a defining property of WEB. Experimentally,
single-particle observations have indeed shown relevanceof WEB in macromolecule diffusion in biologi-
cal systems [51,23,50,44,31,34] and in blinking quantum dots [29,5,43,42]. However, it remains unclear,
both theoretically and experimentally, how useful these developments on WEB are to characterize many-body
problems such as the KPZ class. Therefore, it is a challenging and important issue to clarify if WEB occurs
in KPZ, and if yes, characterize the WEB of the KPZ class.

1 Throughout the paper,〈· · ·〉 denotes the ensemble average defined over infinitely many realizations. It is independent of
x because of the translational symmetry. Therefore, for evaluation, we can take averages over positions too to achieve better
statistical accuracy, without changing its mathematical definition.

2 In the literature, our definition ofP±(t,t0) based on the ensemble average is sometimes called the “survival probability”,
in which case the term “persistence probability” is reserved for the probability that the sign ofh(x,t)− h(x,t0) is unchanged
[4]. However, in the present paper, we define our persistenceprobability by the ensemble average (unless otherwise stipulated),
following earlier studies of direct relevance.

3 θ (p)
+ < θ (p)

− holds when the underlying KPZ nonlinearityλ
2 (∇h)2 is positive, otherwise the order is reversed [25]. Note also

that the estimates obtained in [25] are somewhat different from those from the LC experiment [48]. We believe this is because
of the different choice of the reference timet0: while it was taken to be right after the initial condition in[25], times in the
asymptotic KPZ regime were used in the LC experiment [48]. This is also the choice of the present paper; therefore, here we

refer to the estimates from the LC experiment,θ (p)
+ ≈ 1.35 andθ (p)

− ≈ 1.85, as the values of the persistence exponents for the
flat KPZ subclass.
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Fig. 1 Waiting-time distributions (ccdfs)p±(τ ;t) againstτ/t for the circular interfaces, obtained at differentt in the LC exper-
iment (main panels) and the Eden model (insets). The dashed lines are guides to the eyes indicating exponent−0.8. The same
set of colors/symbols andt is used in both panels. The ordinates are arbitrarily shifted.

2 Our approach

To investigate possible relationship between WEB and KPZ, we construct a dichotomous process from height
fluctuations of KPZ-class interfaces,σ(x, t) ≡ sign[δh(x, t)], which is then regarded as a time series. Such
dichotomization has recently been used to characterize time-correlation properties of interactions on lipid
membranes [52,53] and of turbulence [22,21], successfully. The constructed process is compared with a
theoretically defined dichotomous process, arguably the simplest and best-studied one, namely the renewal
process (RP) [15,9,18]. RP consists of a single two-state variable, which switches from one to the other state
after random, uncorrelated waiting times generated by a power-law distribution:

p(τ) ≡ Prob[waiting time> τ] =
(

τ
τ0

)−θ
, (τ ≥ τ0). (4)

This model shows WEB and aging for 0< θ < 1 [15,9,18,39].
Concerning KPZ-class interfaces, we use the experimental data of the circular and flat interfaces ob-

tained in Refs. [49,48] (LC turbulence): for the circular (or flat) case, total observation time wasTtot =
30.5s (63s), time resolution wasTres= 0.5s (0.35s), andN = 955 (1128) realizations were used, respec-
tively. We also analyze newly obtained numerical data for circular interfaces of the off-lattice Eden model
[45] (Ttot = 5000,Tres= 1,N = 5000) and flat interfaces of the discrete polynuclear growth(dPNG) model
(Ttot = 104,Tres= 0.1,N = 104). Further descriptions of the systems and parameters are given in Appendix A.

3 Results

3.1 Circular interfaces

First of all, we stress that RP is far too simple to fully describe KPZ, because RP is a two-state model without
even spatial degrees of freedom and has uncorrelated waiting times. We nonetheless measure the waiting times
between two sign changes ofδh, first for the circular interfaces, for which we anticipate relation to WEB as
discussed above. More specifically, we define the waiting-time distributionp±(τ; t) by the probability that the
sign renewed at timet (changed to the subscripted one) lasts over time lengthτ or longer, hencep±(τ; t) is the
complementary cumulative distribution function (ccdf). Figure 1 shows the results for both the LC experiment
(main panels) and the Eden model (insets). Remarkably, in both cases we find a clear power law as described
in Eq. (4) with exponentθ = 0.8, while the cutoffτ0 is out of the range of our resolution.

This similarity to RP leads us to compare further statistical properties between the two systems. First we
focus on the forward recurrence timeτf(t), defined as the interval between timet and the next sign change, as
well as the backward recurrence timeτb(t), which is the backward interval fromt to the previous sign change
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Fig. 2 Distributions (pdfs) of the forward (a,b) and backward (c,d) recurrence times,τf andτb, respectively, for the circular
interfaces at differentt in the LC experiment (main panels) and the Eden model (insets). τf andτb are rescaled byt. The black
lines indicate RP’s exact results, Eqs. (5) and (6), withθ = 0.8. The data are normalized so that they have the same statistical
weight as RP’s exact results in the range covered by their abscissa. The same set of colors/symbols andt is used in all panels.
Note that data att = 25s are not shown forτf because the remaining time is then too short to measure the distribution ofτf .

[18,14,15]. For RP, Dynkin [14,18] derived exact forms of the probability density function (pdf) ofτf(t) and
τb(t) as follows, for 0< θ < 1:

pdf(τ̃f) =
sinπθ

π
1

τ̃f
θ (1+ τ̃f)

, (5)

pdf(τ̃b) = β1−θ ,θ (τ̃b)≡
sinπθ

π
τ̃b

−θ (1− τ̃b)
θ−1, (6)

with τ̃f ≡ τf/t, τ̃b ≡ τb/t andβa,b(x) denoting the pdf of the beta distribution. Although their derivation essen-
tially relies on the independence of waiting times in RP, a feature not shared with KPZ, we find, as shown in
Fig. 2, that both experimental and numerical results for thecircular interfaces precisely follow RP’s exact re-
sults indicated by the solid lines (except finite-time corrections). Note that the persistence probabilityP±(t, t0)
considered in Eq. (3) actually amounts to the ccdf ofτf(t0), i.e.,P±(t, t0) =

∫ ∞
t−t0

pdf(τf(t0))dτf . This indicates
that the functional form of the persistence probability, which is usually intractable for such spatially-extended
nonlinear systems [4], seems to be given by RP’s exact result(5) in the case of the circular KPZ subclass. We
also remark that the explicit dependence of the pdfs ont indicates the aging of the system.

In contrast to this agreement, we also find statistical properties that are clearly different between the two
systems. The occupation timeT+, i.e., the length of time spent by the positive sign, is a quantity well-studied
in two-state stochastic processes [30,18] and in more general scale-invariant phenomena (see, e.g., [11]). It is
simply related to the time-averaged signσ̄ ≡ (1/T )

∫ T
0 σ(x, t)dt by σ̄ = 2T+/T −1. For RP with 0< θ < 1,
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Lamperti [30] showed that it does not converge to the ensemble average, but remains stochastic even for
T → ∞, with its pdf derived exactly as follows [30,18]:

pdf(σ̄) =
(2sinπθ/π)(1− σ̄2)θ−1

(1+σ̄)2θ +(1−σ̄ )2θ +2(cosπθ )(1−σ̄2)θ . (7)

This distributional behavior of the time-averaged sign is aclear evidence of WEB in RP. The corresponding
pdfs obtained at differentT for the circular KPZ interfaces [Fig. 3(a) symbols] indeed indicate an asymptotic
broad distribution, demonstrating thatσ̄ remains stochastic and does not converge to the ensemble average
〈σ〉=−0.021 (determined by the GUE Tracy-Widom distribution) shownby the gray vertial line in Fig. 3(a).
This demonstrates that KPZ indeed exhibits WEB, at least forthe circular case. On the other hand, the found
distribution is clearly different from the Lamperti’s one for RP withθ = 0.8 (black dashed line). We find
instead a nontrivial distribution universal within the circular KPZ subclass, as supported by good agreement
between experiments and simulations (symbols and turquoise solid line).

Another quantity of interest is the correlation function ofsign,Csign(t, t0)≡ 〈σ(x, t)σ(x, t0)〉. This can be
expanded by the generalized persistence probabilityP±,n(t, t0), i.e., the probability that the sign changesn
times betweent0 andt (henceP±,0(t, t0) = P±(t, t0)):

Csign(t, t0) = ∑
±

P±(t0)
∞

∑
n=0

(−1)nP±,n(t, t0), (8)

whereP±(t0) denotes the probability that fluctuations att0 take the sign indicated by the subscript. For RP with
0< θ < 1, one can explicitly calculate the infinite sum of Eq. (8) andobtainCsign(t, t0)≃ ∑± P±(t0)P±,0(t, t0)∼

(t/t0)−θ [18]. In contrast, for the circular KPZ interfaces, we find thatCsign(t, t0) decays asCsign(t, t0)∼ t−λ̄

with λ̄ = 1/3 [Fig. 3(b)] (see also footnote 4), in the same way as the rescaled correlation functionCres(t/t0)
does [Eq. (2)]. Since the relation (8) holds generally andP±,0(t, t0) =

∫ ∞
t−t0

pdf(τf(t0))dτf is alike, the differ-
ence from RP should stem fromP±,n≥1(t, t0), which encodes correlation between waiting times. For RP, one
can show

P±,n≥1(t0+∆ t, t0)∼

{

∆ t−2θ+1 for ∆ t ≪ t0,
∆ t−θ for ∆ t ≫ t0,

(9)

with t0,∆ t ≫ τ0 (see Appendix B). Now, for the circular KPZ interfaces, the results in Fig. 4 show that the
long-time behavior seems to be consistent with that of RP4, but the short-time behavior for oddn shows faster

4 For some quantities the asymptotic decay is only reached by the numerical data, obtained with longer time.
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decay than that of RP (after the initial growth, which occursat∆ t . n1/θ τ0 for RP; see Appendix B). In other
words,P±,n(t0+∆ t, t0) has heavier weight in the short-time regime for oddn. This difference from RP gives
nontrivial contribution to the sum in Eq. (8), which is absent for RP. We consider that this is how the different
behavior of the correlation function arises, which captures, for KPZ, the characteristic time correlation of the
(non-binarized) KPZ-class fluctuations.

3.2 Flat interfaces

Now we turn our attention to the flat interfaces. Figure 5 shows the waiting-time distribution (ccdf)p±(τ; t)
for the flat LC experiment (main panels) and the dPNG model (insets). At short waiting times, we identify
power-law decay with exponent−0.8. This exponent seems to be different from−2/3 previously observed
for a related quantity in the KPZ stationary state [25]5, but is identical to the one we found for the circular
interfaces (Fig. 1). For the flat interfaces (Fig. 5), however, this power law is followed by another one with
larger (in magnitude) exponent for longer waiting times, which now takes different values between positive
and negative fluctuations. The measured exponents do not seem to reach their asymptotic values within our
observation time, increasing gradually withτ, but they are clearly asymmetric with respect to the sign, insharp
contrast with the exponent for the shorter waiting times or for the circular interfaces. Moreover,p±(τ; t) taken
at differentt overlaps when it is plotted againstτ/t (Fig. 5). This indicates that the value ofτ separating the

5 The exponent measured in [25] was about the persistence probability of the sign of∆h(x,t)−∆h(x,t0) with ∆h(x,t) =
h(x,t)−

∫ L
0 h(x,t)dx/L, whereas we measure here the waiting-time distribution, orthe persistence probability of the sign of

δ h(x,t) = h(x,t)−〈h(x,t)〉 with the conditionδ h(x,t0) = 0. Although both probabilities concern the first return to zero, the
different definitions may lead to different exponent values.
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two power-law regimes is not constant, but grows witht, showing the aging property of the waiting-time
distribution.
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These results on the flat-KPZ waiting-time distribution lead us to introduce a variant of RP with two
power-law regimes, called hereafter the 2-step RP model6:

p±(τ; t) =















(

τ
τ0

)−θ
for τ0 ≤ τ ≤ t,

(

t
τ0

)−θ
(τ

t

)−θ ′
±

for t ≤ τ.
(10)

We then solved it numerically withθ = 0.8, θ ′
+ = 1.2, θ ′

− = 1.5 (as observed experimentally) in the following
way: First, the initial sign was chosen to be either+ or − with the equal probability. The first waiting time
was generated according top±(τ; t) = (τ/τ0)

−θ ′
± (τ ≥ τ0), because Eq. (10) is invalid fort = 0. Subsequent

waiting times were generated by Eq. (10), until the time (cumulative sum of waiting times) exceeds the
recording timeTtot. We sampled 106 independent realizations to investigate statistical properties of this 2-step
RP model.

Now we compare this 2-step RP model and the flat KPZ interfaces. Figure 6 shows the forward and back-
ward recurrence-time distributions. We find that these quantities for the flat KPZ interfaces are reproduced by
the 2-step RP model reasonably well, similarly to those for the circular interfaces found in agreement with the
standard RP. Aging of the recurrence-time distributions isalso clear in both cases. Note however that, while
pdf(τf)∼ τ−θ

f is known to hold for the standard RP [Eq. (4)] with 1< θ < 2 [18], our 2-step RP rather indi-

cates pdf(τf)∼ τ−θ ′
±−1

f [dotted lines in Fig. 6(a,b)]. Since pdf(τf) is given by the derivative of the persistence

probability, this impliesθ ′
± = θ (p)

± , hence asymptoticallyθ ′
+ = 1.35 andθ ′

− = 1.85 are expected for the flat
KPZ subclass.

In contrast to this agreement in the recurrence-time distributions, the distribution of the time-averaged sign
σ̄ = (1/T )

∫ T
0 σ(x, t)dt turns out to be different between the flat KPZ subclass and the2-step RP [Fig. 7(a)],

analogously to the results for the circular interfaces. More specifically, both the flat KPZ subclass and the
2-step RP are found to show asymptotic broad distributions [Fig. 7(a)], hence both of them exhibit WEB, but
the distributions are again clearly different between the two systems. Note here that the time-averaged sign
distribution for the standard RP [Eq. (4)] withθ > 1 becomes infinitely narrow in the limitt → ∞ [18]; this
is however not the case here, despiteθ ′

± > 1. The existence of the broad distribution results from the aging of
the waiting-time distribution, i.e., from the fact that thecrossover time in the waiting-time distribution grows
with t [see Fig. 5 and Eq. (10)].

The difference between the flat KPZ subclass and the 2-step RPis also detected in the correlation func-
tion of sign,Csign(t, t0) = 〈σ(x, t)σ(x, t0)〉: while our simulations of the 2-step RP showCsign(t, t0) ∼ t−θ ′

+

[Fig. 7(b)], for the flat interfaces it decays ast−λ̄ with λ̄ = 1 [Fig. 7(c,d)], the characteristic exponent for
the decorrelation of the flat KPZ subclass [see Eq. (2)]. Similarly to the circular case, this difference re-
sults from correlation of waiting times, which can be characterized by the generalized persistence probability
P±,n(t0+∆ t, t0). For the 2-step RP, i.e., in the absence of correlation, we numerically find [Fig. 8(a,b)]

P±,n≥1(t0+∆ t, t0)∼

{

∆ t−2θ+1 for ∆ t ≪ t0,
∆ t−θ ′

± for ∆ t ≫ t0,
(11)

where in the latter case the two double signs are set to be the same sign for evenn and the opposite ones for odd
n. This long-time behavior can also be seen in the flat KPZ subclass [Fig. 8(c,d) for the LC experiment and (e,f)
for the dPNG model]. In contrast, short-time behavior ofP±,n≥1 is found to be different between the 2-step
RP and the flat KPZ subclass [compare data and the dashed linesin Fig. 8(c-f)], the latter carrying heavier
weight in the short-time regime. Analogously to the circular case, such pronounced short-time behavior of
P±,n≥1 seems to generate, via Eq. (8), the characteristic decay of the correlation functionCsign(t, t0) slower
than that of the 2-step RP [Fig. 7(b)].

6 Strictly, since the evolution of the 2-step RP model [Eq. (10)] depends ont, it is not in the scope of the models considered
in the renewal theory.
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Fig. 7 Time-averaged sign distribution (a) and sign correlation function (b-d) for the flat interfaces (a,c,d) and the 2-step RP
(b). (a) Pdf of the time-averaged sign̄σ = (1/T )

∫ T
0 σ (x,t)dt for the LC experiment (T = 15s,30s,63s for circles, squares,

and diamonds, respectively) and the dPNG model (T = 10000; turquoise line), compared to numerical data for the 2-step RP
(T = 107; dashed line). The gray vertical line indicates the ensemble-averaged value〈σ 〉=−0.0316. The existence of the broad
asymptotic distribution is a direct evidence of WEB in the flat KPZ subclass, but in the form different from that of the circular
case. (b-d) Correlation function of sign,Csign(t,t0) = 〈σ (x,t)σ (x,t0)〉, at differentt0 for the 2-step RP (Ttot = 106) (b), the LC
flat interfaces (c), and the dPNG model (d). The dashed lines in the panels (c,d) indicate the exponent−λ̄ =−1, while the dotted
line in the panel (b) shows−θ ′

+ =−1.2.

4 Concluding remarks

We have shown an unexpected similarity between sign renewals of the KPZ-class fluctuations and RP, studied
in the context of aging phenomena and WEB. Despite the fundamental difference between the two systems,
we found, for the circular interfaces, that the KPZ waiting times obey simple power-law distributions identical
to those defining RP, while those for the flat interfaces correspond to its straightforward extension with two
power-law regimes [Eq. (10), the 2-step RP model]. Further quantitative agreement has been found in the
recurrence-time distributions (Figs. 2 and 6), from which the agreement in the persistence probability follows.
These quantities have remained theoretically intractablefor KPZ, but now, following the agreement we found,
their precise forms are revealed for the circular interfaces, thanks to the exact solutions for the original RP.
This also implies that recurrence-time statistics may be determined independently of the intercorrelation of
waiting times, contrary to the usual beliefs.

The correlated waiting times of KPZ otherwise generate characteristic aging properties of the KPZ-class
fluctuations (Figs. 3 and 7), especially their broad asymptotic distributions of the time-averaged sign. This
indicates WEB of the KPZ-class fluctuations, which turned out to be different from that of RP, and in fact
also from other types of WEB, known from the studies of single-particle observations. We therefore consider
that the WEB found in this study is of a new kind, characteristic of many-body problems governed by the



10

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10

10
-2

10
0

10
2

10
-6

10
-4

10
-2

10
-2

10
0

10
2

10
-4

10
-3

10
-2

10
-1

∆t / t0 ∆t / t0

P
+

, 
n
(t

0
+

∆
t,

 t
0
)

P
–
, 
n
(t

0
+

∆
t,

 t
0
)

∆t / t0 ∆t / t0

P
+

, 
n
(t

0
+

∆
t,

 t
0
)

P
–
, 
n
(t

0
+

∆
t,

 t
0
)

∆t / t0 ∆t / t0

P
+

, 
n
(t

0
+

∆
t,

 t
0
)

P
–
, 
n
(t

0
+

∆
t,

 t
0
)

(c) (d)

(e) (f)

LC flat at t
0
 = 16s, + sign LC flat at t

0
 = 16s, – sign

(a) (b)2-step RP at t
0
 = 103, + sign 2-step RP at t

0
 = 103, – sign

dPNG at t
0
 = 425.2, + sign dPNG at t

0
 = 425.2, – sign

n = 1

n = 2

n = 3

n = 4

-2θ+1 -2θ+1

-2θ+1 -2θ+1

-2θ+1
-2θ+1

-θ' + -θ' +

-θ' +

-θ' +

-θ' +

-θ' +

-θ' –
-θ' –

-θ' –

-θ' –

-θ' –

-θ' –

Fig. 8 Generalized persistence probabilitiesP±,n(t,t0) for the 2-step RP (Ttot = 106) (a,b) and for the flat KPZ-class interfaces
[LC experiment (c,d) and dPNG model (e,f)], measured for thepositive (a,c,e) and negative (b,d,f) signs. The dashed lines in all
panels indicate the exponent−2θ +1= −0.6 found in the short-time regime (∆t ≪ t0) of the 2-step RP. The dotted and dot-
dashed lines are guides for the eyes indicating exponents−θ ′

+ and−θ ′
−, respectively, which characterize the long-time regime

for the 2-step RP [see Eq. (11)]. The same set of colors/symbols andn is used in all panels.

KPZ universality class. This also implies that RP cannot be aproxy for the full KPZ dymamics; instead RP
reproduces only some of the time-correlation properties ofKPZ, surprisingly well, though.

In fact, such a partial similarity to RP was also argued in thepast for the fractional Brownian motion
(FBM), in the context of linear growth processes. Krug et al.[28] showed, for the stationary state of linear
growth processes, that the stochastic processh(x, t)−h(x, t0) is equivalent to FBM. Its first-return time (cor-
responding to the waiting time of its sign) is then characterized by a power-law distribution with exponent
θ = 1−β [19,10,28] withβ being the growth exponent, or the Hurst exponent of FBM. Cakir et al. [6] then
suggested that the sign of FBM would form RP, showing numerical observations of its persistence probability
as a partial support, but it turned out later that the two models behave differently in other statistical quantities
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[17], because of the intercorrelation of waiting times. In our contribution, we studied the growth regime of
nonlinear growth processes in the KPZ class and compared thesign of the stochastic processh(x, t)−〈h(x, t)〉
with RP. As already summarized, we showed thereby precise agreement in the waiting-time distribution and
the persistence probability, but not in the other statistical properties we studied. Understanding the mecha-
nism of this partial agreement is an important issue left forfuture studies, all the more because no theoretical
understanding has been made so far on persistence properties of the KPZ growth regime [4]. Such develop-
ments will also help to understand the deviations from RP, which we believe carry characteristic information
of underlying growth processes (recall our results on the correlation function). We hope this direction of
analysis may afford a clue to elucidate hitherto unexplained time-correlation properties of the KPZ class. We
also believe that our approach may be useful to characterizeother scale-invariant processes such as critical
phenomena.
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“Non-equilibrium dynamics of soft matter and information”, and the National Science Foundation under Grant No. NSF PHY11-
25915.

Appendix A Studied systems

In this appendix we briefly describe the three systems studied in this paper, namely the LC experiment [49,48], the off-lattice
Eden model [45], and the dPNG model, all known to be in the KPZ class. The experimental results are obtained from the raw
data acquired in Refs. [49,48]. The readers are referred to these publications for the complete description of the experimental
system.

Appendix A.1 LC experiment

The experiment concerns fluctuating interfaces between twoturbulent regimes of electrically driven nematic liquid crystal,
called the dynamic scattering modes 1 and 2 (DSM1 and DSM2, respectively) [47,49,48]. The DSM1/DSM2 configuration can
be argued to lie in pure two dimensions7, so the interfaces in between are one-dimensional. Under sufficiently high applied
voltage, here 26V, DSM2 is more stable than DSM1, and the interfaces grow until the whole system is occupied by DSM2.
The initial nucleus of the DSM2 state can be introduced by shooting laser pulses. This allows us to study both circular andflat
growing interfaces: circular interfaces grow from a point nucleus generated by focused laser pulses, while flat interfaces originate
from a linear region of DSM2, created by linearly expanded laser pulses.

In Refs. [49,48], Takeuchi and Sano measured 955 circular interfaces over time length 30.5s and 1128 flat interfaces over
63s, and found the characteristic statistical properties of the circular and flat KPZ subclasses, respectively. In the present study,
we employ the same data sets which are guaranteed to belong tothese subclasses, and analyze the sign of the height fluctua-
tions as explained in the main text. The sign renewals are detected at every 0.5s and 0.35s for the circular and flat interfaces,
respectively.

Appendix A.2 Off-lattice Eden model

Numerical data for circular interfaces are obtained with the off-lattice Eden model, the version introduced in Ref. [45] which is
sometimes called the off-lattice Eden D model. While detailed descriptions can be found in Ref. [45], in this model, one starts
with a round particle of unit diameter placed at the origin oftwo-dimensional continuous space. At each time step, one randomly
chooses one of theN existing particles, and attempts to put an identical particle next to it in a direction randomly chosen from
the range[0,2π). If the new particle does not overlap any existing particles, it is added as attempted, otherwise the particle is
discarded. Timet is then increased by 1/N, whether the attempt is adopted or not. Particles without enough adjacent space, to
which no particle can be added any more, are labelled inactive and excluded from the particle counterN (but can still block
new particles). Since we are interested in the interface, orspecifically the outermost closed loop of adjacent particles, particles
surrounded by the interface are also marked inactive and treated likewise. This model was previously shown to belong to the
circular KPZ subclass [45]. The data presented in the present paper are newly obtained from 5000 independent simulations of
time length 5000, and the sign renewals are detected at everytime unit.

7 This is because the DSM2 state, known to consist of densely entangled topological defects, needs to break surface anchoring
on the bottom and top plates to be sustained in the system.
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Appendix A.3 dPNG model

Numerical simulations of flat interfaces are performed withthe dPNG model. This is a discretized version of the PNG model,
which is one of the exactly solvable models in the(1+ 1)-dimensional KPZ class [37]. The evolution of the height variable
h(x = i∆x,t = n∆t) of the dPNG model, with non-negative integersh, i,n, is given by the following equation:

h(x,t +∆t) = max{h(x−∆x,t),h(x,t),h(x+∆x,t)}+η(x,t), (12)

whereη(x,t) is an independent and identically distributed random variable generated from the geometric distribution, Prob(η =
k) = (1− p)k p with p = ρ∆x∆t. The original PNG model with nucleation rateρ and nucleus expansion rate∆x/∆t is retrieved
by the continuum limit∆x → 0 and∆t → 0.

In our study, we setρ = 2,∆x = ∆t = 0.1 and the periodic boundary conditionh(L,t) = h(0,t) with L = 104 (or 105 lattice
units). We start from the flat initial conditionh(x,0) = 0 and evolve the system untilt = 104 by 104 independent simulations. The
sign renewals are detected at every time step, i.e.,∆t = 0.1 time unit. Note that the dPNG model with∆x = ∆t = 0.1 shows the
same universal statistical properties as the original PNG model, provided that the height variableh(x,t) is appropriately rescaled
using non-universal scaling coefficients [v∞ andΓ in Eq. (1)]. The values of the scaling coefficients depend on∆x and∆t: for
example, they are estimated atv∞ ≈ 2.2408 andΓ ≈ 1.571 for the dPNG model studied here (the evaluation method described
in Ref. [48] is used), while the values for the original PNG model (corresponding to∆x,∆t → 0) arev∞ = 2 andΓ = 1.

Appendix B Generalized persistence probability for RP

Here we derive two asymptotic behaviors of the generalized persistence probability for the renewal process with a power-law
waiting-time distribution. We assume Eq. (4) withθ < 1 for the waiting time distribution. Thus, the Laplace transform of the
probability density function (pdf) of waiting timesτ , ρ(τ)≡ p′(τ), is given by

ρ̂(s) = 1−asθ +O(s), (13)

with a = Γ (1−θ)τθ
0 [18]. The generalized persistent probability can be represented by

Pn(t0+∆t,t0) = Prob[∆tn < ∆t;t0]−Prob[∆tn+1 < ∆t;t0], (14)

where Prob[∆tn < ∆t;t0] is the probability that∆tn ≡ τf(t0)+ τ2+ · · ·+ τn < ∆t holds, with waiting timesτi and the forward
recurrence timeτf(t0) (time elapsed fromt0 to the first renewal event since then). Forn ≥ 1, the double Laplace transform of
Pn(t0+∆t,t0) with respect tot0 and∆t can be calculated as follows:

P̂n(s,u) ≡
∫ ∞

0

∫ ∞

0
Pn(t0+∆t,t0)e

−st0−u∆ tdt0d∆t

=
f̂E(u;s)ρ̂(u)n−1

u
−

f̂E(u;s)ρ̂(u)n

u
, (15)

where f̂E(u;s) is the double Laplace transform of pdf(τf(t0);t0), given by [18]

f̂E(u;s)≡
∫ ∞

0

∫ ∞

0
pdf(τf ;t0)e

−uτf−st0dτfdt0

=
ρ̂(u)− ρ̂(s)

s−u
1

1− ρ̂(s)
. (16)

Therefore,

P̂n(s,u) =
ρ̂(u)− ρ̂(s)

s−u
1

1− ρ̂(s)
ρ̂(u)n−1 1− ρ̂(u)

u
. (17)

Now we consider the following two asymptotic limits. Foru ≪ s ≪ τ−1
0 (τ0 ≪ t0 ≪ ∆t), we obtain

P̂n(s,u)≃
1
s

auθ−1, (18)

where we used approximation̂ρ(u)n−1 ≃ 1− a(n− 1)uθ ≃ 1. In other words,u is so small thata(n−1)uθ ≪ 1, i.e.,∆t ≫
(n−1)1/θ τ0 ≃ n1/θ τ0. Then the inverse Laplace transform yields

Pn(t0+∆t,t0)≃

(

∆t
τ0

)−θ
, (19)

for τ0 ≪ t0 ≪ ∆t and∆t ≫ n1/θ τ0. We note that this asymptotic behavior does not depend ont0 nor n. In contrast, fors ≪ u ≪
τ−1

0 (τ0 ≪ ∆t ≪ t0),

P̂n(s,u) ≃
1
sθ au2θ−2, (20)
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where we used the same approximation as in the previous case.The inverse Laplace transform then yields

Pn(t0+∆t,t0)≃
Γ (1−θ)

Γ (θ)Γ (2−2θ)

(

t0
τ0

)−1+θ(∆t
τ0

)−2θ+1

, (21)

for n1/θ τ0 ≪ ∆t ≪ t0. This asymptotic behavior is independent ofn but does depends ont0.
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21. Herault, J., Pétrélis, F., Fauve, S.: 1/ f α low frequency fluctuations in turbulent flows. J. Stat. Phys.161, 1379–1389 (2015)
22. Herault, J., Pétrélis, F., Fauve, S.: Experimental observation of 1/ f noise in quasi-bidimensional turbulent flows. Europhys.

Lett. 111, 44,002 (2015)
23. Jeon, J.H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sørensen, K., Oddershede, L., Metzler, R.: In Vivo

anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett.106, 048,103 (2011)
24. Johansson, K.: Two time distribution in brownian directed percolation. arXiv:1502.00941 (2015)
25. Kallabis, H., Krug, J.: Persistence of kardar-parisi-zhang interfaces. Europhys. Lett.45, 20–25 (1999)
26. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett.56, 889–892 (1986)
27. Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, kpz universality and random matrices. J.

Phys. A43, 403,001 (2010)
28. Krug, J., Kallabis, H., Majumdar, S.N., Cornell, S.J., Bray, A.J., Sire, C.: Persistence exponents for fluctuating interfaces.

Phys. Rev. E56, 2702–2712 (1997)
29. Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A., Nesbitt, D.J.: Nonexponential “blinking” kinetics of single cdse

quantum dots: A universal power law behavior. J. Chem. Phys.112, 3117 (2000)
30. Lamperti, J.: An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc.88, 380–387 (1958)
31. Manzo, C., Torreno-Pina, J.A., Massignan, P., Lapeyre,G.J., Lewenstein, M., Garcia Parajo, M.F.: Weak ergodicitybreaking

of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X5, 011,021 (2015)
32. Margolin, G., Barkai, E.: Nonergodicity of blinking nanocrystals and other lévy-walk processes. Phys. Rev. Lett.94, 080,601
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