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Hyperbolic decoupling of tangent space and effective dimension of dissipative systems
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We show, using covariant Lyapunov vectors, that the tangent space of spatially extended dissipative systems
is split into two hyperbolically decoupled subspaces: one comprising a finite number of frequently entangled
“physical” modes, which carry the physically relevant information of the trajectory, and a residual set of strongly
decaying “spurious” modes. The decoupling of the physical and spurious subspaces is defined by the absence of
tangencies between them and found to take place generally; we find evidence in partial differential equations in
one and two spatial dimensions and even in lattices of coupled maps or oscillators. We conjecture that the physical
modes may constitute a local linear description of the inertial manifold at any point in the global attractor.
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I. INTRODUCTION

Nonlinear, dissipative, partial differential equations (PDEs)
are frequently used for describing natural phenomena in all
fields of physics and beyond. They are particularly important
for out-of-equilibrium problems such as pattern formation,
turbulence, spatiotemporal chaos, etc. [1,2]. Because of the
nonlinearities involved, their generic solutions are mostly
studied via numerical simulation.

A simple question arises then: Can one faithfully integrate
such PDEs, which are formally infinite-dimensional dynamical
systems, when numerical schemes obviously involve only a
finite number of degrees of freedom? For the practitioner,
the answer is yes, as one easily observes that with increasing
numerical resolution the obtained (chaotic) solutions converge
in the sense that they exhibit the same dynamical or statistical
properties. Mathematically speaking, the notion of inertial
manifold, on which all trajectories evolve after a short
transient, is crucial in this context [3–5]. For generic parabolic
PDEs such as the Kuramoto-Sivashinsky (KS) equation [2]
and the complex Ginzburg-Landau (CGL) equation [6], it is
in fact proven that trajectories are first exponentially attracted
to a finite-dimensional inertial manifold and eventually settle
in a global attractor of finite Hausdorff dimension [7–11].
The inertial manifold is a smooth object embedding the
global attractor, which in principle reduces the evolution of
trajectories to a finite set of ordinary differential equations.
However, this mathematical object remains largely formal, for
lack of a constructive way to determine which modes actually
constitute it.

In fact, even the dimension of the minimal inertial manifold
stays beyond the reach of mathematical arguments. So far,
only upper bounds have been calculated, such as L2.46 for the
one-dimensional KS equation in a domain of size L [8,9].
This is to be contrasted with the intuitive expectation that it
should grow linearly with L, as suggested by the extensivity
of chaos [12] observed routinely in generic one-dimensional
systems [13–17] including the KS equation [13,14].

In a different context, Cvitanović and co-workers have
developed a constructive approach to unravel the “skeleton” of
the chaotic dynamics of dissipative systems including PDEs
[18–20]: By exploiting hierarchies of unstable periodic orbits,
chaotic solutions are represented rather faithfully in simplified,
finite-dimensional spaces, and some quantitative properties
can be systematically estimated. However, it is not clear how
the finite-dimensional inertial manifold can emerge from the
interplay of infinitely many unstable periodic orbits involved,
to various degrees, in the dynamics.

In the present paper, we show results that could constitute
a first step toward a constructive approach to the finite-
dimensional inertial manifold of dissipative PDEs. Using
Lyapunov analysis, we study the tangent-space evolution of
spatially extended dynamical systems. Since N -dimensional
dynamical systems have N Lyapunov exponents, the numerical
integration of a given PDE provides as many Lyapunov
exponents as one likes by just increasing the spatial resolution.
Now, suppose that this PDE has an inertial manifold of
finite dimension and that we use a resolution with a larger
number of degrees of freedom. In a recent work [21], we
showed that covariant Lyapunov vectors, which span the
Oseledec subspaces [22] and give the intrinsic directions
of growth of perturbations for each Lyapunov exponent,
exhibit a decomposition of tangent space into a fixed, finite
number of “physical” modes and a remaining set of “spurious”
modes, whose number increases with increasing resolution.
The excess spurious modes are associated with very negative
Lyapunov exponents and “hyperbolically” decoupled from
the physical modes. Hence, perturbations along them quickly
decay and do not spread to any physical mode. Below, we
pursue this approach and provide a precise characterization
of the decoupling between the physical and spurious modes.
We show in particular that the decoupling takes place even
between arbitrary combinations of physical or spurious modes,
defining a finite-dimensional manifold in the tangent space,
which should contain all the relevant information for the
phase-space dynamics. We also provide a criterion giving an
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accurate estimate of the dimension of the physical manifold
from finite-time simulations.

As mentioned above, the key quantities to access this
hyperbolic decoupling are covariant Lyapunov vectors (CLVs).
At each point in phase space, they constitute the intrinsic
directions of growth of perturbations associated with each
Lyapunov exponent; in other words, they span the Oseledec
subspaces [22]. Therefore, their spatial structure is meaningful
and their relative angles rule the hyperbolicity properties of
the dynamical system. Note that they cannot be replaced,
even qualitatively, by the Gram-Schmidt vectors, which are
by-products of the standard method [23,24] to compute
Lyapunov exponents. It is only recently that CLVs have
become rather easy to compute numerically, notably thanks
to the efficient algorithm presented in Ref. [25]. In the present
study, we compute the Lyapunov exponents by the standard
Gram-Schmidt method [23,24] and the associated CLVs by
Ginelli’s algorithm [25].

The paper is organized as follows. In Sec. II, we demon-
strate our main results using the one-dimensional (1D) KS
equation, a prototypical dissipative PDE showing spatiotem-
poral chaos. We then apply the same approach to the 1D
CGL equation in Sec. III to show how the hyperbolic
decoupling reflects phase-space dynamics in different regimes
of spatiotemporal chaos. In particular, we study what is called
the phase turbulence regime [6] of the CGL equation, in
order to answer the long-standing question regarding whether
this regime can be fully described by “phase modes.” In
Secs. IV and V we study 1D lattice systems and the 2D KS
equation, respectively, demonstrating the general existence of
the physical manifold. Section VI contains a discussion and
our conclusions.

II. 1D KURAMOTO-SIVASHINSKY EQUATION

A. Definition and numerical scheme

We first focus on the 1D KS equation [1,2]:

∂u

∂t
= −∂2u

∂x2
− ∂4u

∂x4
− u

∂u

∂x
, x ∈ [0,L], (1)

with a real-valued field u(x,t). Boundary conditions are set to
be periodic (PBC) u(x,t) = u(x + L,t) for most of the data be-
low, but rigid boundary conditions (RBC) u(0,t) = u(L,t) = 0
are also used for comparison. The size is fixed at L = 96
unless otherwise indicated, for which the 1D KS equation
exhibits spatiotemporal chaos with both boundary conditions.
For numerical integration, we use the pseudospectral method
with discrete Fourier or sine modes up to a cutoff wave
number kcut. The number of collocation points is chosen so
that no aliasing may occur. Integration is carried out with
the operator-splitting method, which adopts the second-order
Adams-Moulton method for the linear terms and Heun’s
method (two-stage second-order Runge-Kutta method) for
the nonlinear term, with time step 0.005. Most of the data
presented in this section are obtained with PBC, L = 96,
and kcut = 42 × 2π/L, that is, with 43 Fourier modes, from
integration over a period of roughly 105 after a transient period
about 104 is discarded.
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FIG. 1. (Color online) Spectrum of the Lyapunov exponents �(j )

for the 1D KS equation with L = 96. (a) Full spectra. Different
symbols correspond to different cutoff wave numbers kcut and
different boundary conditions, either PBC or RBC, as indicated in
the legend. (Inset) Close-up around the threshold. (b) Close-up of
(a) showing the positive end of the spectra. (c) The same Lyapunov
spectra shown against j 4. The data for kcut = 42 × 2π/L with PBC
(black upward triangles) are omitted for the sake of clarity. The value
of the Kaplan-Yorke dimension is about 21.6 for kcut = 42 × 2π/L

and PBC.

B. Lyapunov exponents and Lyapunov vectors

Figures 1(a) and 1(b) show the spectrum of the Lyapunov
exponents �(j ) arranged in descending order for different
spatial resolutions and boundary conditions. The Lyapunov
spectrum consists of two parts: first, a smooth region of
positive, zero, and negative exponents and, second, a rather
steep region of negative exponents arranged in steps of two for
PBC. The two regions are separated by an abrupt change in
slope, accompanied by the formation of a stepwise structure
for PBC (inset). Remarkably, the spectra for different spatial
resolutions overlap almost perfectly, with additional exponents
due to the improved resolution simply accumulating at the
negative end of the second region (upward and downward
triangles). Thus, the threshold separating the two regions
remains unchanged (here around j = 40) upon increasing
the resolution, though its exact index cannot be defined
unambiguously only from the spectrum and will be given
later on a firm basis. Note also that in the second region the
boundary conditions only change the multiplicity of modes:
Every other mode overlaps nicely for both types of boundary
conditions. All these observations lead to a speculation that
the Lyapunov modes in the second region are “spurious”
and dampen quickly, whereas all the physical properties of
the dynamics are carried by the Lyapunov modes in the first
region. This intuition shall be substantiated in the following
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FIG. 2. Typical spatiotemporal structure of the trajectory u(x,t)
(a) and CLVs δu(j )(x,t) (b), (c) in the physical and the spurious
regions, respectively, for the 1D KS equation (L = 96, kcut = 42 ×
2π/L, PBC). The index of the CLV shown here is j = 8 (b) and
j = 46 (c).

by studying the CLVs δu(j )(x,t) associated with the Lyapunov
exponents �(j ).

Figure 2 shows typical spatiotemporal structures of CLVs in
the physical and the spurious regions of the Lyapunov spectrum
as well as that of the trajectory for the resolution kcut =
42 × 2π/L with PBC (corresponding to the black upward
triangles in Fig. 1). At first glance, the CLVs for the physical
and spurious Lyapunov modes have qualitatively different
structures; whereas CLVs of the physical modes [Fig. 2(b)]
evolve in a manner similar to the trajectory itself [Fig. 2(a)],
those of the spurious modes are essentially sinusoidal apart
from a slight modulation of the amplitude [Fig. 2(c)]. This
can be seen more clearly in the spatial power spectra of the
CLVs [Fig. 3(a)]. In contrast to the smooth structure of the
spectra found for the physical modes, those for the spurious
modes are characterized by the existence of a sharp peak for
the sinusoidal structure, whose wave number k

(j )
peak increases
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FIG. 3. (Color online) Spatial power spectrum of the CLVs for
the 1D KS equation (L = 96, kcut = 42 × 2π/L, PBC). (a) Power
spectrum of CLVs of index j = 1,16,32,38,44,52,60,68,76, and 84
(from left to right at the peak positions). (b) Peak wave number kpeak

of the power spectra (red circles) and k = [j/2] × 2π/L (blue line).

linearly with the index j [Fig. 3(b)]. For PBC, the two modes
forming a step in the Lyapunov spectrum are found to have the
same peak wave number and even the same power spectrum,
but with an arbitrary phase shift in the vector structure. This
multiplicity of two does not exist with RBC, since the phase
of the sinusoid is fixed at the boundary. Moreover, the peak
wave number k

(j )
peak turns out to be simply the j th wave number,

with the multiplicity taken into account, allowed in the given
spatial geometry: k

(j )
peak = [j/2] × 2π/L for PBC [Fig. 3(b)],

where [x] is the integer part of x. The power spectra of the
spurious modes [Fig. 3(a)] show that they are dominated by a
sinusoidal structure at this trivial wave number k

(j )
peak, and even

more so as j is large. Therefore, the value of their Lyapunov
exponent is determined predominantly by the stabilizing linear
term of the KS equation, that is, the fourth-order derivative,
and hence �(j ) ≈ −(k(j )

peak)4 ∼ −j 4 for large enough j , as is
indeed confirmed in Fig. 1(c).

C. Angles between covariant Lyapunov vectors

The sinusoidal structure of the Lyapunov vectors of spu-
rious modes suggests that they are nearly orthogonal to each
other. Unlike Gram-Schmidt vectors, CLVs allow us to check
this directly through the angle θ (i,j ) between vectors defined
by the inner product

cos θ (i,j )(t) ≡
∫ L

0
δu(i)(x,t)δu(j )(x,t) dx, (2)

with L2-normalized vectors
∫ L

0 δu(j )(x,t)2dx = 1. Since the
angle θ fluctuates in time, one needs to study its distribution
function ρv(θ ).

The result is shown in Fig. 4(a) for PBC. Indeed, the angle
distributions ρv(θ ) between any pairs of CLVs of index j � 42
are peaked at π/2 and drop rapidly near 0 and π [pairs (41,42),
(43,44), and (61,62) in Fig. 4(a)]. This is also true if one of the
vectors is taken in the region j � 41 [pair (20,60)], but when
both vectors are taken from this region [pairs (39,40) and
(40,41)], the angle distribution spans the whole [0,π ] interval.
The change in the distribution is found to be quite sharp in this
example; notice that the indices are varied only one by one
for neighboring pairs in Fig. 4(a) [the pairs in the same step,
e.g., (42,43), are skipped]. The transition between physical
and spurious modes can thus be characterized by the existence
or the absence of vector tangencies, arbitrarily close to the
phase-space trajectory. An angle distribution bounded away
from 0 and π marks the absence of such tangencies, while a
finite weight at 0 or π indicates that the given pair of vectors
has a finite probability of forming any arbitrarily small angle
along the phase-space trajectory. Note that while two different,
nondegenerate CLVs, will never be exactly coincident, thus
tangent, at any point of the phase-space trajectory, they can
get arbitrarily close to each other if the angle distribution has
a finite value at 0 or π . In the following, we use the term
tangency to describe this latter occurrence. With this in mind,
the results in Fig. 4(a) show that the physical modes exhibit
such tangencies rather frequently. In contrast, the spurious
modes, in addition to the negative values of their Lyapunov
exponent, do not have any tangencies with other spurious
modes (except the partner in the same step) nor with physical
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FIG. 4. (Color online) Distributions ρv(θ ) of the angles θ between
pairs of CLVs for the 1D KS equation (kcut = 42 × 2π/L, PBC).
(a) ρv(θ ) versus θ for L = 96. The indices of the pairs are indicated
on the figure. (b) ρv(θ ) versus 1/θ for L = 96 and for pairs (41,42),
(43,44), (61,62), (81,82), (20,60) from right to left. The ordinate is
averaged over both sides of the distribution. (Inset) Close-up of the
distributions. (c) Angle distributions ρv(θ ) for the pair (41,42) with
varying system size L = 96,97, . . . ,105 (from inside to outside in
the figure). The distribution is obtained from shorter simulations for
L > 99, recorded over time 105. (d) Probability density ρv0 of the
distribution ρv(θ ) at θ = 0 and π , as a function of L (inset) and of
1/(L − Lc) with a given Lc (main panel). Pairs of the vectors are
fixed at (41,42) (black open symbols) and (43,44) (red full symbols).
The value of Lc is Lc = 93.0 for the pair (41,42) and Lc = 97.5 for
(43,44). The circles and squares correspond to the recording times
105 and 106, respectively.

modes. In this sense, they are hyperbolically isolated from any
other modes.

A closer look reveals that, while at the threshold in-
dex the tail of the angle distribution decreases as ρv(θ ) ∼
exp(−const/θ ) with decreasing θ within our numerical pre-
cision, showing an essential singularity at θ = 0 and π , it
decays even more rapidly for larger indices [Fig. 4(b)]. This
qualitative change of behavior provides, in our opinion, a
more accurate way of defining the threshold. Nevertheless,
care should be taken when arguing about the existence or
the absence of tangencies from finite-time simulations. To
determine the exact threshold, one needs to perform a careful
asymptotic analysis on the frequency of tangencies. This can
be achieved by studying the system size dependence of the
angle distribution ρv(θ ). Figure 4(c) shows how ρv(θ ) changes
for a given pair of CLVs, the pair (41,42) here, with varying
system size L. The value of ρv(θ ) at the tail, denoted by ρv0,
decreases with decreasing L, and from a certain system size the
tail disappears [inset of Fig. 4(d)]. A singularity analysis shows
that it decays as ρv0 ∼ exp[−const/(L − Lc)], providing a
threshold Lc = 93 for the pair (41,42) and Lc = 97.5 for
(43,44) [main panel of Fig. 4(d)]. This, in turn, allows us
to determine the exact number of the threshold index, or the
number of the physical modes, at Nph = 43 for L = 96. The

critical decay of the angle distribution observed for a fixed
size L, ρv(θ ) ∼ exp(−const/θ ), remains up to θ → 0, strictly,
only at L = Lc for a given pair of indices; otherwise, it should
be eventually replaced by a faster decay or convergence to a
finite value.

Be aware that the threshold Nph determined here does not
coincide with the index at which the stepwise structure of
the Lyapunov spectrum is formed for PBC [j = 40 here; see
inset of Fig. 1(a)]. Indeed, a closer scrutiny of the exponents
reveals that the first few steps are actually slightly inclined,
and hence no threshold can be unambiguously defined from
them. The exponents alone can only provide a good guess of
the location of the threshold; instead, it must be determined
from the hyperbolicity properties, as evidenced in this section.

D. Angles between subspaces

In the previous section we showed the hyperbolic decou-
pling of all the spurious modes from any physical mode.
This, however, does not necessarily imply that they are also
decoupled from the manifold spanned by the physical modes,
as properly pointed out by Kuptsov and Kuznetsov [26], since
it does not exclude the possibility of tangencies between a
linear combination of physical modes and of spurious ones.
Here, following the idea in Ref. [26], we clarify this issue
by studying the smallest possible angle formed by any linear
combination of physical modes and any linear combination of
spurious modes. It is equivalent to the minimum angle between
the subspaces spanned by them.

The angle between subspaces can be computed as follows:
Given the matrices Qph and Qsp defining the orthogonal bases
of the two subspaces, which can be easily obtained by the QR
decomposition of the arrays of the corresponding CLVs, the
minimum angle between the two subspaces can be obtained
simply from the singular value decomposition of the matrix
QT

phQsp [27,28], as

cos φ = σ1
(
QT

phQsp
)
, (3)

where σ1 is the largest singular value and the superscript T
denotes the transpose [29].

Figure 5 shows the result, which does not change the view
presented above. The angle distribution ρs(φ) is bounded
away from zero [Fig. 5(a)], so that no tangency exists even
between the two subspaces. The tail of the distribution is
governed by the pairs of Lyapunov modes of closest indices
from both groups, and hence we find a similar critical decay
ρs(φ) ∼ exp(−const/φ) within the observed time window
(inset). The system size dependence is also studied in the
same manner [Fig. 5(b)], providing the same value of Lc as
from the vector angle distribution ρv(θ ) shown in Fig. 4(d).
This implies that the subspace spanned by the Nph physical
modes is hyperbolically decoupled from the subspace of the
remaining spurious modes or from any other single spurious
mode. In strong contrast, inside the manifold of the physical
Lyapunov modes, these modes are highly entangled with
frequent tangencies as we have found in Fig. 4(a).
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FIG. 5. (Color online) Distribution ρs(φ) of the angle φ between
the physical and spurious subspaces for the 1D KS equation (kcut =
42 × 2π/L, PBC). (a) ρs(φ) versus φ for L = 96. The physical
subspace is spanned by CLVs of index 1 to Nph = 43, while the
rest spans the spurious subspace. Note that φ is by definition equal
to or smaller than π/2, in contrast to θ in Fig. 4. (Inset) The same
data shown against 1/φ. (b) Probability density ρs0 of the distribution
ρs(θ ) at φ = 0 for varying system size L. It is measured between two
subspaces spanned by CLVs of indices given in the legend, and shown
against L (inset) and 1/(L − Lc) (main panel) with the same Lc as in
Fig. 4(d). The circles and squares correspond to the recording times
105 and 106, respectively.

E. Domination of Oseledec splitting

The absence of tangencies for the spurious modes can also
be confirmed from another viewpoint, specifically, in terms
of the domination of the Oseledec splitting (DOS) [30,31].
Roughly, DOS refers to the dynamical isolation of the Oseledec
subspaces from each other due to the strict ordering of the
local expansion rates. Let λ

(j )
τ (t) be the finite-time Lyapunov

exponent obtained by averaging the local expansion rate of the
j th CLV from time t to t + τ , that is,

λ(j )
τ (t) ≡ 1

τ
log ||Jτ (t)δu(j )(x,t)||, (4)

where Jτ (t) is the Jacobian operator for the evolution of
the given dynamical system over time τ and the CLVs are
normalized as ||δu(j )(x,t)||2 ≡ ∫ L

0 δu(j )(x,t)2dx = 1. Then,
the splitting of a pair of 1D subspaces, or CLVs, of indices j1

and j2(>j1) is said to be dominating if λ
(j1)
τ (t) > λ

(j2)
τ (t) holds

for all t with τ larger than a finite τ0. It has been mathematically
proven that DOS indicates the absence of tangency between
the corresponding CLVs [30,31]. To quantify DOS, we define,
following [32]

�λ(j1,j2)
τ (t) ≡ λ(j1)

τ (t) − λ(j2)
τ (t). (5)

We then measure the time fraction of the DOS violation

ν(j1,j2)
τ = 〈

1 − �
[
�λ(j1,j2)

τ (t)
]〉
, (6)

where �(z) is the step function and the brackets denote the
time average. Note that one needs to compute the finite-time
Lyapunov exponents λ

(j )
τ (t) from the CLVs, not from the

standard method based on the QR decomposition [23,24],
because they indicate different local expansion rates despite the
same values of the long-time average. The right ones reflecting
the physical properties of the tangent space, such as DOS, are
those from the CLVs [30,31].

The result is shown in Fig. 6. The DOS violation fraction
ν

(j,j+1)
τ for the pairs of the neighboring exponents with τ = 0.2

FIG. 6. (Color online) Violation of DOS in the KS equation
(L = 96, kcut = 42 × 2π/L, PBC). (a) Time fraction of the DOS
violation, ν(j,j+1)

τ , for pairs of the neighboring modes with τ = 0.2.
The pairs within the same step are omitted. (Inset) ν

(j,j+1)
τ=0.2 with

j = 41 (black open symbols) and j = 43 (red solid symbols), shown
against 1/(L − Lc) with the same Lc as in Fig. 4(d). The circles and
squares correspond to the recording times 105 and 106, respectively.
(b) ν

(j1,j2)
τ=0.2 for arbitrary pairs. The black color indicates ν(j1,j2)

τ = 0,
that is, hyperbolically isolated pairs. The red dashed lines indicate
the threshold Nph = 43 between the physical and spurious modes.

drops sharply near the threshold and becomes strictly zero for
j � Nph = 43 [Fig. 6(a)] except the pairs in the same step.
This split is found not only for the pairs of the neighbors;
in fact, ν

(j1,j2)
τ stays zero for any pair that includes a spurious

mode [Fig. 6(b)], as expected from the fact that all the spurious
modes are hyperbolically decoupled from the physical modes.
The exact number of the physical modes Nph can also be
checked from the system size dependence of ν

(j,j+1)
τ [inset of

Fig. 6(a)] in the same way as for the angle distributions of
the vectors or the subspaces. All this confirms the absence
of tangencies of the spurious modes, which has already been
seen from the angle distributions, indicating the same number
of the physical modes.

F. What does the absence of tangencies imply?

We now explore the implication of the absence of tangencies
for the spurious modes. Suppose that we add an infinitesimal
perturbation along an arbitrary CLV to the dynamics. If this is a
spurious mode, the perturbation decays exponentially to zero,
as indicated by their negative Lyapunov exponents. Further,
the absence of tangencies implies that this does not induce
any perturbation along the directions spanned by the other
Lyapunov modes. In contrast, perturbations along the physical
modes will propagate to other physical modes through the
tangencies between them, that is, whenever two modes get
arbitrarily close to each other, and eventually induce activity
in all the physical modes. This is true even if the initial
perturbation was made along the physical modes with negative
exponents, since they are directly or indirectly connected to
those with positive exponents, where the propagated perturba-
tion exponentially grows to affect the phase-space dynamics
considerably. The situation does not change if we initially add a
perturbation along a linear combination of physical or spurious
CLVs: Since the physical and spurious subspaces themselves
are hyperbolically isolated (Fig. 5), activities in the spurious
modes decay altogether without propagating to one or a set of
physical modes, and vice versa. In this sense, the dynamics
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corresponding to the physical modes is highly entangled, but
completely decoupled from the decaying dynamics of the
spurious modes.

Moreover, we find that the number of the physical modes
Nph does not depend on the spatial resolution, provided it
is high enough. This implies that even in the high resolution
limit, or in the original PDE, the number of the physical modes
remains the same, while infinitely many spurious modes can
appear by increasing the resolution. Therefore, the physical
modes are probably associated with the finite number of the
intrinsic degrees of freedom describing the dynamics of the
PDE. This leads to the conjecture that the physical modes
may span the local linear approximation of the (minimal)
inertial manifold. The number of the physical modes Nph

would then indicate the inertial manifold dimension, which is
the smallest possible number of degrees of freedom to describe
the dynamics of the given system.

G. Extensivity

The physical modes being the active degrees of freedom
of the system, one expects that their number Nph scales
linearly with the system size L in systems known otherwise
to show extensive chaos. This is indeed the case: In Fig. 7
the Lyapunov spectra with their index rescaled by L collapse
both in the physical and in the spurious regions with the
stepwise structure retained. As suggested from this collapse,
the number of physical modes is found to increase linearly
with L; that is, it is an extensive quantity, just like the
other common quantities indicating effective dimensions of a
dynamical system [22] such as the number of the non-negative
Lyapunov exponents and the Kaplan-Yorke dimension (inset
of Fig. 7). Note that the physical manifold dimension Nph

(blue triangles) is the largest, in particular, larger than the
Kaplan-Yorke dimension (red squares). This corroborates
the speculation made above that the physical manifold may
provide a tangent-space representation of the inertial manifold,
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FIG. 7. (Color online) Extensivity of the Lyapunov spectrum
(main panel) and effective dimensions (inset) of the KS equation
(with PBC). Shown in the inset are the number of the non-negative
Lyapunov exponents (black circles), the Kaplan-Yorke dimension
(red squares), the metric entropy (green diamonds, multiplied by 50),
and the number of the physical modes Nph (blue triangles). Nph is
estimated here from finite-time simulations of given sizes, so that
it could be slightly underestimated. The dashed line indicates linear
regression for each quantity.

which is a smooth manifold embedding the global attractor.
Though, clearly, some mathematical rigor is needed here, our
result may provide an estimate of the KS inertial manifold
dimension D at

D = Nph ≈ 0.43 × L, (7)

which is drastically lower than the existing mathematical upper
bound D � const × L2.46 [8,9]. Given the length scale 2π

√
2

associated with the most unstable wave number of the KS
equation, which can be taken as the size of the “building
blocks” of spatiotemporal chaos in this system, the above
estimate implies that each building block contains roughly
2π

√
2 × 0.43 ≈ 3.8 degrees of freedom.

In fact, the estimate in Eq. (7) is obtained from the angle
distributions and the DOS violation of finite-time simulations,
so that the prefactor in Eq. (7) may be slightly underestimated.
If we use, instead, the fact that Nph increases exactly by two
between two threshold sizes Lc = 93.0 and 97.5, we obtain
Nph ≈ 0.44 × L, or 4.0 physical modes per building block of
length 2π

√
2. This estimate is remarkably close to the result

of an argument by Sasa [33] showing that solutions of the 1D
KS equation can be reconstructed, at least qualitatively, with
four modes per building block.

III. 1D COMPLEX GINZBURG-LANDAU EQUATION

A. Definition and numerical scheme

To elucidate the generality of our finding, we now consider
the CGL equation. It describes oscillatory modulations in
spatially extended continuous media at the most basic level,
but the genericity of the phenomena described by the CGL
equation is known to be, in fact, much larger [1,6]. In one
spatial dimension, it governs a complex field W (x,t) with
x ∈ [0,L] according to

∂W

∂t
= W − (1 + iβ)|W |2W + (1 + iα)

∂2W

∂x2
, (8)

for which the phase �(x,t) associated with the isochrone [2]
of the local oscillation is given by

�(x,t) = arg W (x,t) − β ln |W (x,t)|. (9)

We consider here only PBC, W (x + L,t) = W (x,t). Numeri-
cal integration is performed similarly to the KS equation, with
the pseudospectral method and the operator-splitting method
implemented by the second-order Adams-Moulton and Heun’s
methods. The time step is set to be 0.01.

We study here two representative regimes of the spa-
tiotemporal chaos of the CGL equation, namely the amplitude
turbulence regime and the phase turbulence regime [6,34,35].
Both regimes correspond to the situation where plane-wave
solutions are rendered unstable by the Benjamin-Feir in-
stability. When varying the parameter values and crossing
the Benjamin-Feir line at αβ = −1, one first encounters the
phase turbulence regime; the phase field �(x,t) controls the
spatiotemporal chaos, while the amplitude |W (x,t)| remains
rather quiescent, staying nonzero everywhere [Fig. 8(a)].
Beyond this regime, amplitude turbulence takes place, in which
defects associated with null amplitude and discontinuous
change in the phase, in other words, phase slips, are constantly
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FIG. 8. Spatiotemporal dynamics of the phase turbulence at α =
2.0 and β = −0.91 (a) and the amplitude turbulence at α = 2.5 and
β = −2.0 (b) in the CGL equation with PBC. The system size is
L = 64 for both cases. The gray scale covers the whole range of the
values taken by |W | and d�/dt except for the phase velocity d�/dt

in the amplitude turbulence (b) showing frequent phase slips (bright
and dark spots). Notice the different time scales between (a) and (b).

created and annihilated [Fig. 8(b)]. The observed dynamics
is chaotic both in amplitude and in phase for the amplitude
turbulence, while in the phase turbulence regime, where no
phase slips occur, it has usually been considered that only
the phase �(x,t) is active and the amplitude is effectively
slaved to it [6]. Below we show, among other things, that this
difference between amplitude turbulence and phase turbulence
is reflected in the structure of the physical Lyapunov modes,
thus rooting it on a firm basis.

B. Amplitude turbulence

We first focus on the amplitude turbulence regime, in which
the amplitude and the phase evolve chaotically on rather
short time and length scales. Specifically, we use α = 2.5,
β = −2.0, L = 64, and kcut = 31 × 2π/L. Data are recorded
over a period of about 107 after a transient period of 2.5 × 104.

Figure 9 shows the Lyapunov spectrum in the amplitude
turbulence regime. A stepwise region is present, as in the KS
equation, but here the multiplicity of each step is four and
the spatiotemporal evolution of CLVs in the stepwise region
exhibits traveling waves (Fig. 10) instead of the stationary
wave found in the KS equation [Fig. 2(c)]. Traveling waves
are the natural modes here, as can be readily seen from
the linear stability analysis of the null solution W (x,t) = 0,
which gives exp[i(±kx − ωt) + �t] with � = 1 − k2 and
ω = αk2. This makes the modes with the wave number k
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FIG. 9. (Color online) Lyapunov spectrum for the CGL amplitude
turbulence. The stepwise structure starts at j = 71. The red dashed
line indicates �(j ) = 1 − k2 − 2〈|W |2〉 derived by Garnier and
Wójcik for pure Fourier perturbations [36]. (Inset) The same data
against j 2. The Kaplan-Yorke dimension in this case is about 28.6.

and −k distinguishable, albeit degenerate, and thus leads
to the additional multiplicity of two in the CGL amplitude
turbulence. Indeed, each CLV in the stepwise region shows
a sharp peak in the power spectrum, located at the trivially
determined wave number of the j th traveling wave, namely, at
k = [(j + 1)/4]2π/L (Fig. 11). The values of the Lyapunov
exponents therefore decrease as �(j ) ≈ −k2 ∼ −j 2 for large
j (inset of Fig. 9). A better estimate was obtained by Garnier
and Wójcik [36], who derived �(j ) = 1 − k2 − 2〈|W |2〉 for
these stepwise exponents (red dashed line in Fig. 9), assuming
perturbations of pure Fourier modes. In passing, the degener-
acy of k and −k modes implies that these two modes can be,
in fact, mixed up in a single vector; their CLVs are either in
the pure k mode, in the pure −k mode, or patches of the two,
changing their states very slowly in time (Fig. 10).

In spite of these differences, the spurious modes in the
amplitude turbulence are again hyperbolically isolated from
any other modes. Figure 12(a) shows the angle distribution
ρv(θ ) for pairs of the neighboring Lyapunov modes. Similarly
to the KS equation, the functional form of ρv(θ ) sharply
changes at the threshold located at the pair (j,j + 1) with

t
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32
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32
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π

FIG. 10. Spatiotemporal evolution of a typical CLV in the
spurious region (j = 78) for the CGL amplitude turbulence. The
phase component arg δW (j ) is plotted. The two plots are from
the same trajectory but at two distant periods of time, showing pure
upward traveling waves and patches of upward and downward waves,
respectively.
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FIG. 11. (Color online) Spatial power spectrum Sj (k) of the CLVs
for the CGL amplitude turbulence, shown as a function of the wave
number k and the Lyapunov index j . Given that Sj (k) and Sj (−k) are
statistically equivalent, their average is shown in the figure. The black
dashed line separates the physical and spurious regions at Nph = 74.
The white solid line indicates k = [(j + 1)/4]2π/L.

j = Nph = 74, above which the distributions are strictly
bounded. The tail of the distribution near the threshold exhibits
the same critical decay ρv(θ ) ∼ exp(−const/θ ) within our
numerical precision [Fig. 12(b)]. The absence of tangencies
is also checked from the distribution of the angle φ between
the physical and spurious subspaces spanned by the vectors
1 � j � Nph and Nph < j , respectively [Fig. 12(c)]. The angle
distribution ρs(φ) is indeed bounded away from φ = 0. Though
the subspace angle φ is smaller than the angle θ for any pair
of CLVs including a spurious mode, ρs(φ) eventually decays
as exp(−const/φ) for small φ [Fig. 12(d)], confirming the
absence of any tangencies. The spurious modes are therefore
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FIG. 12. (Color online) Distributions of the angle between neigh-
boring CLVs (a), (b) and between the physical and spurious subspaces
(c), (d) in the CGL amplitude turbulence. (a) Distribution func-
tion ρv(θ ) for CLV pairs (66,67),(70,71),(74,75),(86,87),(94,95)
from outside to inside. (b) ρv(θ ) versus 1/θ for the data shown
in (a). The ordinate is averaged over both sides of the distribution.
(c) Angle distribution ρs(φ) between the physical subspace spanned
by CLVs of indices 1 � j � Nph = 74 and the spurious one formed
by the remaining CLVs. (d) The same data shown against 1/φ.

 

0 50 100
0

50

100

(a) (b)

j

j

1

2 74

74

10

10

10

10
0

-2

-4

-6

0 5 10 15 20
τ

10-6

10-4

10-2

100

ν τ(j  
,j

 +
1)

(66,67)
(70,71)
(74,75)
(86,87)
(94,95)

FIG. 13. (Color online) Violation of DOS in the CGL amplitude
turbulence. (a) Time fraction ν(j,j+1)

τ of the DOS violation of the
neighbor exponents as a function of τ . The dashed line is a guide
for the eyes showing an exponential decay. (b) ν(j1,j2)

τ for arbitrary
pairs with τ = 16. The black color indicates ν(j1,j2)

τ = 0, that is,
hyperbolically isolated pairs. The red dashed lines indicate the
threshold Nph = 74 between the physical and spurious modes.

isolated from any other modes outside the step they belong to
in the Lyapunov spectrum, and from any linear combination
of the physical modes, in the same way as for the KS equation.

Concerning the DOS violation, though the time fraction
ν

(j1,j2)
τ measured with small τ is not zero even in the spurious

region, the same threshold Nph = 74 is found when we
consider larger values of τ [Fig. 13(a)]. Contrary to what
happens for j1,j2 � Nph, ν

(j1,j2)
τ for j2 > Nph decreases faster

than exponentially, though exponential decay may persist up
to the largest τ explorable near the threshold. This decay
faster than exponential implies the existence of a finite τ

beyond which ν
(j1,j2)
τ is zero. With such large τ values, every

quartet of the spurious modes is indeed hyperbolically isolated
from all the other modes, while the physical modes including
those in the first apparent step are connected to the neighbors
[Fig. 13(b)]. All these results are consistent with what we have
found for the KS equation and determine exactly the number
of the physical modes, here at Nph = 74.

C. Phase turbulence

We now turn our attention to the phase-turbulence regime
[Fig. 8(a)], in which the dynamics is believed to be governed by
the phase variable [6]. We choose here α = 2.0, β = −0.91,
and L = 96. The cutoff wave number is kcut = 31 × 2π/L

unless otherwise indicated. In this phase-turbulence regime,
the global phase difference is conserved because of the absence
of phase slips. Here we set it to be zero, in which case phase
dynamics is well-described by the KS equation, at least close
to the Benjamin-Feir line [6]. Data are recorded over a period
of about 106 after a transient period of 5 × 104 is discarded.

In this regime, the Lyapunov spectrum shown in Fig. 14
reveals an interesting structure; now there are much fewer
physical modes (black circles) than in the amplitude turbulence
and they are followed by three distinct regions of spurious
modes. The modes in the first spurious region resemble those
in the KS equation (red squares), while in the last part of
the spectrum we find a structure similar to that in the CGL
amplitude turbulence (blue triangles). In between, the spurious
modes appear to be mixed up with the modes that would
take part in the physical region in the amplitude turbulence
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FIG. 14. (Color online) Lyapunov spectrum �(j ) for the CGL
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of the Lyapunov modes (see text). The Kaplan-Yorke dimension in
this case is about 14.6. (Inset) Lyapunov spectra with different spatial
resolutions.

regime, as suggested from the rather smooth structure of
the spectrum (green diamonds). We shall therefore refer to
these spurious modes as KS-like, amplitude-turbulence-like
(AT-like), and mixed, respectively, as will be justified later. The
exact indices for all the thresholds will be given as well from
their hyperbolicity properties. Increasing the spatial resolution
merely results in adding further AT-like spurious modes at the
end of the spectrum without changing the essential features of
the existing modes (inset of Fig. 14).

Figure 15 shows the spatial power spectra of the associated
CLVs. This justifies the above classification of the spurious
modes; in the physical region the power spectrum of the
CLVs reflects that of the trajectory (not shown) and thus it
hardly changes with varying index, except for those associated
with null Lyapunov exponents or too close to the threshold.
For the KS-like and AT-like spurious modes, the CLVs are
nearly sinusoidal, as indicated by a sharp peak in their power
spectrum. Their peak wave number kpeak is determined by the
same trivial geometrical rules as those for the KS equation and
for the amplitude turbulence, respectively: kpeak = [j/2]2π/L

for the former and kpeak = [(j + 1)/4]2π/L for the latter

j

k
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FIG. 15. (Color online) Spatial power spectrum Sj (k) of the CLVs
for the CGL phase turbulence, shown as a function of the wave
number k and the Lyapunov index j . Given that Sj (k) and Sj (−k)
are statistically equivalent, their average is shown in the figure. The
peak wave number for each j is indicated by the white rectangles.
The black dashed lines separate the four regions of the Lyapunov
modes. The white solid lines indicate k = [j/2]2π/L (upper line)
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wave numbers found for the spurious modes in the KS equation and
in the CGL amplitude turbulence, respectively.
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FIG. 16. Spatiotemporal evolution of a typical KS-like and AT-
like mode in the CGL phase turbulence. (a) Amplitude |W | of the
dynamics. (b), (c) Phase component δ�(j ) of the CLV for the KS-like
spurious mode at j = 28 (b) and for the AT-like one at j = 91 (c).

(white solid lines in Fig. 15). In contrast, the mixed spurious
region consists of two branches; one continues from the
KS-like spurious modes, corresponding to the upper branch
in the peak wave number, and the other continues from the
physical modes, forming the lower branch. The two branches
finally merge, marking the start of the AT-like spurious region.

The correspondence of these modes to the spurious modes
of the KS equation and the CGL amplitude turbulence is
not found only in the peak wave number. Figure 16 displays
the spatiotemporal structure of a typical KS-like and AT-like
spurious mode, showing specifically the local phase shift δ�(j )

onto the phase field � [Eq. (9)] induced by the corresponding
CLV. It is defined by the relation

δW (j ) = [δA(j ) + i(Aδ�(j ) + βδA(j ))]ei(�+β ln A), (10)

obtained with A(x,t) ≡ |W (x,t)| and W = Aei(�+β ln A), and
is a natural counterpart of the vector component δu(j ) for the
KS equation. In this phase shift field, the KS-like spurious
modes [Fig. 16(b)] reveal essentially stationary wave structure
with amplitude modulated by the dynamics, in the same way
as those for the KS equation [Fig. 2(c)]. Similarly, the same
traveling wave structure as in the amplitude turbulence regime
(bottom insets of Fig. 9) is found for the AT-like spurious
modes [Fig. 16(c)].

In spite of this rather complicated internal structure of the
spurious region, the essential feature of the spurious modes
remains the same; they are all hyperbolically isolated from
the physical modes. Figures 17(a)–17(d) shows the angle
distributions for pairs of neighboring Lyapunov modes near the
thresholds. For the threshold between the physical and KS-like
spurious modes, the first two visible doublets in the Lyapunov
spectrum (24 � j � 27) belong, in fact, to the physical region
[see the pair (25,26) in Figs. 17(a) and 17(b)], whereas the
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FIG. 17. (Color online) Distributions of the angle between
neighboring CLVs (a)–(d) and between pairs of subspaces (e), (f)
in the CGL phase turbulence. (a) Distribution function ρv(θ ) for
CLV pairs (34,35),(25,26),(33,34),(27,28),(29,30) from outermost
to innermost. They determine the thresholds for the physical, KS-like,
and mixed regions. (b) ρv(θ ) versus 1/θ for the data shown in (a).
The ordinate is averaged over both sides of the distribution. (c) ρv(θ )
for CLV pairs (82,83),(85,86),(86,87),(90,91) as indicated by the
labels. They are relevant to the threshold between the mixed and
AT-like regions. (d) ρv(θ ) versus 1/θ for the data shown in (c). The
ordinate is averaged over both sides of the distribution. (e) Subspace
angle distributions ρs(φ). The abbreviations P, K, M, and A refer
to the physical modes (1 � j � 27), the KS-like spurious modes
(28 � j � 33), the mixed spurious modes (34 � j � 86), and the
AT-like spurious modes (87 � j � 126), respectively. The rightmost
two curves overlap almost perfectly. (f) The same data as (e) shown
against 1/φ.

first KS-like spurious mode is found at j = 28 [pair (27,28)
in (a) and (b)]. The KS-like spurious modes are hyperbolic
with respect to any other modes outside the step including
other KS-like doublets [pair (29,30) in (a) and (b)] and the
mixed modes [pair (33,34) in (a) and (b)]. In contrast, the
mixed spurious modes, despite the absence of tangencies with
any physical, KS-like, and AT-like modes, do have tangencies
inside the mixed region [pair (34,35) in (a) and (b) and pairs
(82,83),(85,86) in (c) and (d)]. The asymmetry (with respect
to π/2) of some of the distributions is due to the finite length of
the simulations, indicating that correlations relax very slowly
for these pairs of CLVs. In the AT-like spurious region, every
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FIG. 18. (Color online) Violation of DOS in the CGL phase
turbulence. (a) Time fraction ν(j,j+1)

τ of the DOS violation for pairs of
neighboring Lyapunov exponents as a function of τ . Pairs with and
without tangencies in the angle distributions [Figs. 17(a) and 17(b)]
are denoted by open and solid symbols, respectively. All pairs in the
KS-like spurious region (28 � j � 33 excluding those in the same
doublet) perfectly satisfy DOS, that is, ν(j1,j2)

τ = 0, even with such
a small value of τ as 0.2. (b) ν(j1,j2)

τ for arbitrary pairs with τ = 4.
The black color indicates ν(j1,j2)

τ = 0, that is, hyperbolically isolated
pairs. The red dashed lines indicate the thresholds of the four regions.

quartet is again isolated from any other modes including other
quartets in the AT-like region [pairs (86,87),(90,91) in (c) and
(d)]. From all these observations, we precisely determine the
number of the physical modes at Nph = 27, as well as the
index of all the internal thresholds of the spurious region as
illustrated in Fig. 14.

The violation of DOS corroborates this view (Fig. 18).
Though the time fraction of the DOS violation ν

(j1,j2)
τ is found

to decrease sometimes not monotonically with respect to τ for
mixed spurious modes, presumably related to their long-lasting
correlation, ν(j1,j2)

τ decays faster than exponentially for any pair
which lacks tangencies in the angle distributions [Fig. 18(a)].
The matrix representation of ν

(j1,j2)
τ with a sufficiently large τ ,

which is only τ = 4 here, clearly shows that all KS-like dou-
blets and AT-like quartets are completely isolated, while the
mixed spurious modes are densely connected inside the mixed
region but with none of the modes outside [Fig. 18(b)].

Similarly to the cases studied above, not only pairs of single
Lyapunov modes, but any linear combination of them is strictly
hyperbolic if they are chosen from different regions. This is
best demonstrated by the angle distributions for subspaces
spanning the four regions [Figs. 17(e) and 17(f)]. Subspaces
formed by the Lyapunov modes spanning different regions
have always nonzero angles between each other. The angle
distribution ρs(φ) shows the critical decay with essential
singularity, that is, ρs(φ) ∼ exp(−const/φ), or decays even
faster [Fig. 17(f)]. In particular, all the spurious modes,
including mixed ones, do not have any tangency with any
of the physical modes and their Lyapunov exponents are
always negative. The two essential properties of the spurious
modes are thus satisfied by all of them. This implies that
they exponentially decay to zero without interacting with any
physical modes, though some spurious modes are internally
entangled, and thus they are not expected to affect the dynamics
in the global attractor.

These results for the amplitude turbulence and the phase
turbulence lead us to interpret that amplitude degrees of
freedom are slaved in the phase turbulence regime, and this
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produces the mixed spurious region in place, being mixed
with the KS-like spurious modes. To test this speculation, we
compare the structure of the CLVs with that expected under
the assumption of the amplitude slaved by the phase. The
dynamics in the phase turbulence regime indicates that the
amplitude A(x,t) ≡ |W (x,t)| is almost uniquely determined
by the local phase curvature �(x,t) ≡ ∂2�/∂x2, that is,

A(x,t) ≈ A(�(x,t)), (11)

as shown in Fig. 19(a). This then implies the following
amplitude-phase relation for the CLVs, as long as they result
from the slaved amplitude:

δA(j )
p (x,t) ≈ ∂A

∂�
δ�(j )(x,t), (12)

where δA and δ� are the vector components corresponding to
A and �, obtained through Eq. (10) and δ�(j ) = ∂2δ�(j )/∂x2,
and the subscript p denotes the estimate under the assumption
(11). Comparing δA(j )

p with the actual amplitude component

FIG. 19. (Color online) Density plots showing the structure of the
trajectory (a) and of the CLVs (b)–(f) in the CGL phase turbulence.
(a) Density plot for the amplitude A and the phase curvature � of the
trajectory. The red dashed curve indicates the averaged value of A

for each bin of �. (b)–(f) Density plots for the CLVs, comparing
the actual amplitude component δA with that expected from the
assumption of the slaved amplitude, δAp [Eq. (12)]. The red dashed
lines indicate δAp = δA. The abbreviations P, K, M, and A denote a
physical, KS-like, mixed, and AT-like mode, respectively. The upward
and downward arrows next to M denote the upper and lower branches,
respectively, in the plot of the peak wave number [Fig. 14(b)]. All
the data shown here are recorded during two periods of length 103

separated by an interval of roughly 106.

δA(j ), one can examine to what extent the assumption of the
slaved amplitude holds for each Lyapunov mode.

The result is shown in Figs. 19(b)–19(f), which displays
the density plots of δA

(j )
p versus δA(j ) for a typical CLV in

each region of the Lyapunov spectrum. For the CLVs in the
physical region [Fig. 19(b)] the prediction of Eq. (12) holds
as accurately as the slaved amplitude assumption (11) does
for the dynamics [Fig. 19(a)]. It is also the case, albeit with
somewhat larger deviations, for the KS-like spurious modes
[Fig. 19(c)]. This is quite natural because the physical modes
should reflect the dynamics, which is governed by the phase
here, and the KS-like spurious modes are present in the KS
equation, which phenomenologically describes such phase
instability. On the other hand, the mixed spurious modes,
which comprise degrees of freedom not obeying the slaved
amplitude assumption, exhibit very different structures. For
those which belong to the lower branch in the peak wave
number spectrum [Fig. 19(d)], the amplitude δA varies widely,
while the phase component stays essentially quiescent, so
does δAp. This implies that these modes comprise mostly
the amplitude degrees of freedom, which underpins the view
that independent amplitude degrees of freedom are lost and
become spurious in this phase turbulence regime. In contrast,
the mixed spurious modes in the upper branch are still
influenced by Eq. (12) [Fig. 19(e)]. This indicates that these
modes essentially originate from the KS-like modes, but the
slaved amplitude assumption holds only very loosely, probably
because of the mixture with the spurious amplitude degrees of
freedom in the lower branch. Finally, for the AT-like spurious
modes the slaved amplitude assumption does not work any
more [Fig. 19(f)]. The two amplitudes rather rotate in the
δA-δAp plane irrespective of the dynamics, which is in line
with their trivial traveling wave structure [Fig. 16(c)].

In summary, we have found that in the phase turbulence
regime the tangent-space dynamics consists of the physical
modes and the three sets of spurious modes, all of which
are hyperbolically decoupled from any physical mode. These
physical modes essentially stem from the phase degrees
of freedom of the CGL equation, unlike in the amplitude
turbulence where both phase and amplitude participate in
the physical modes. The loss of the amplitude degrees of
freedom considerably reduces the number of the physical
modes and produces instead the mixed spurious modes. This
view is supported by the fact that the mixed spurious region
starts at the exponent value close to −2 [Fig. 14(a)], which
is the stability of the amplitude of a single Ginzburg-Landau
oscillator. Our results, therefore, corroborate the qualitative
picture of the phase turbulence that the dynamics is governed
by the phase, whereas, practically, the amplitude modes do not
serve as independent degrees of freedom as they are essentially
slaved by the phase. It should be noted, however, that the
physical and spurious modes do not correspond exactly to
the phase and amplitude degrees of freedom, respectively, as
can be seen from the weak violation of Eqs. (11) and (12)
in the dynamics and the physical modes [Figs. 19(a) and
19(b)]. This implies that the phase reduction is not exact in the
phase turbulence, in line with results from past studies [37]. To
extract a proper set of global variables describing the dynamics
is a difficult problem, which will be briefly discussed in
Sec. VI.
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IV. 1D LATTICE SYSTEMS

So far we have studied two generic dissipative PDEs
and found the separation of a finite number of physical
modes from the remaining spurious modes. We have argued
that the physical modes correspond to the active degrees
of freedom necessary to describe the dynamics and that
they probably provide the tangent-space representation of the
inertial manifold. Although the concept of the inertial manifold
is of great importance in such PDE systems, the existence of
such a smooth invariant manifold of dimension smaller than
the phase space is not restricted to PDEs. We therefore study
spatially discrete systems in this section, one defined with
discrete time (i.e., map) and another with continuous time
(i.e., ordinary differential equation).

A. 1D lattice of coupled tent maps

First we consider the following 1D lattice of diffusively
coupled tent maps:

xt+1
i = f

(
xt

i

) + K

2

[
f

(
xt

i+1

) − 2f
(
xt

i

) + f
(
xt

i−1

)]

=
[

1 + K

2
D

]
f

(
xt

i

)
, (13)

with i = 1,2, . . . ,L, f (x) = 1 − μ|x|, and the discrete Lapla-
cian operator

Df
(
xt

i

) ≡ f
(
xt

i+1

) − 2f
(
xt

i

) + f
(
xt

i−1

)
. (14)

In such systems, obviously, varying the spatial resolution
does not make sense. Instead, we increase the coupling
constant K so that local dynamical variables xt

i possess
stronger correlations with their neighbors, possibly reducing
the number of effective degrees of freedom.

Here we use μ = 1.1, L = 256, and PBC. With this value
of μ, the local map exhibits four-band chaos. We start from
random initial conditions distributed only within one of the
bands, and hence the coupled-map lattice shows period-4
collective behavior. Data are recorded over roughly 5 × 105

time steps after a transient of nearly the same length.
Figure 20 shows the Lyapunov spectra of this coupled-map

lattice for two values of the coupling constant K . As expected,
while for moderate strengths of the coupling the Lyapunov
spectrum does not show any splitting of the structure (e.g.,
red squares in Fig. 20), strengthening the coupling induces a
stepwise structure at the end of the Lyapunov spectrum [K =
0.65 in Fig. 20 (black circles)], similarly to what happens in
PDEs.

Concerning the structure of the CLVs, the Lyapunov modes
in the smooth region, particularly at the beginning of the
spectrum, tend to be localized at one of the antinodes (or a few
of them) of the wavy structure of the dynamics [Figs. 21(a)
and 21(b)]. Over long time scales the weight shifts from an
antinode to another (or from some to others). In contrast,
those in the stepwise region exhibit stationary wave structures
[Fig. 21(c)] similar to the spurious modes in the KS equation
[Fig. 2(c)].

A difference from the PDE systems is found, however,
in the way the peak wave number of the spurious modes
is determined. Figure 22 shows the spatial power spectra
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FIG. 20. (Color online) Lyapunov spectrum for the coupled tent
maps (13) with varying coupling constant K . (Inset) Close-up of
the end of the spectrum for K = 0.65. The green lines show the
spectrum estimated under the Fourier mode approximation (see text).
The Kaplan-Yorke dimension for K = 0.65 is about 39.9.
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FIG. 21. Spatiotemporal evolution of the dynamics xt
i (a), of a

physical Lyapunov mode at j = 1 (b), and of a spurious Lyapunov
mode at j = 251 (c) in the coupled tent maps with K = 0.65. The
spatial profiles are plotted every eight time steps in order to capture
the internal structure of the period-4 collective behavior.
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FIG. 22. (Color online) Spatial power spectrum of the CLVs for
the tent coupled-map lattice with K = 0.65, shown as a function of
the (integer) wave number k and the Lyapunov index j . The dashed
line indicates k = 87, which gives the smallest eigenvalue for the
coupling operator 1 + (K/2)D (see text). The panel (b) is a close-up
of (a) near the peak wave numbers of the CLVs at the end of the
Lyapunov spectrum.
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of the CLVs. While in PDEs the peak wave number in the
stepwise region increases monotonously according to trivial
geometrical rules (Figs. 3 and 15, except for the special case
of the mixed spurious modes in the CGL phase turbulence), in
the coupled-map lattice it forms two branches, one increasing
and the other decreasing, which eventually join at j = L

at a certain wave number [dark red spots in Fig. 22(b)].
In fact, this is again a simple consequence of the nearly
sinusoidal structure of the CLVs in the stepwise region.
The Fourier modes δWi = sin(2πik/L) and cos(2πik/L)
with integer k are eigenvectors of the coupling operator
1 + (K/2)D in Eq. (13). Their associated eigenvalue is
1 − K[1 − cos(2πk/L)], whose contribution to the Lyapunov
exponent is log |1 − K[1 − cos(2πk/L)]|. Since it is not a
monotonous function of k, the peak wave number in the
power spectra, too, is not monotonous. For K = 0.65, k = 87
gives the eigenvalue closest to zero, and therefore is the peak
wave number for the CLV of the smallest Lyapunov exponent
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FIG. 23. (Color online) Hyperbolicity properties for the tent
coupled-map lattice with K = 0.65. (a) Time fraction ν(j1,j2)

τ of
the DOS violation for arbitrary pairs with τ = 2. The black color
indicates ν(j1,j2)

τ = 0, that is, hyperbolically isolated pairs. The red
dashed lines indicate the threshold Nph = 250 between the physical
and spurious modes. (b) Close-up of (a) near the end of the spectrum.
(c) Angle distributions ρv(θ ) for neighboring CLVs of indices
(246,247),(248,249), . . . ,(254,255) from upper left to lower right.
(d) ρv(θ ) against 1/θ . The ordinate is averaged over both sides of
the distribution. (e) Angle distribution ρs(φ) between the physical
subspace (1 � j � 250) and the spurious one (251 � j � 256).
(f) ρs(φ) against 1/φ.

(dashed line in Fig. 22). Moreover, approximating the contri-
bution from the local map f (x) to the Lyapunov exponent by
log μ, we obtain � = log |1 − K[1 − cos(2πk/L)]| + log μ,
which indeed captures the qualitative structure of the observed
Lyapunov spectrum (Fig. 20).

Despite this apparent difference from PDEs, we identify the
same tangent-space decoupling into the physical and spurious
modes in this coupled-map lattice. Measuring the time fraction
ν

(j1,j2)
τ of the DOS violation, we find that the last three

doublets of Lyapunov modes are hyperbolically isolated from
all the other modes [Figs. 23(a) and 23(b)]. The splitting into
the physical and spurious modes can also be confirmed from
the angle distributions between CLVs [Figs. 23(c) and 23(d)],
as well as that between the physical and spurious subspaces
defined by the corresponding CLVs [Figs. 23(e) and 23(f)]. If
the manifold of the physical modes is a local approximation
of the inertial manifold as we speculate, our results imply
that dissipative coupled map lattices may also have an inertial
manifold, whose dimension is lower than that of the phase
space.

B. 1D lattice of Ginzburg-Landau oscillators

Now we study another example of the spatially discrete
dynamical systems, here defined with continuous time. Specif-
ically, we take the system studied recently by Kuptsov and
Parlitz [38], namely a 1D lattice of CGL oscillators,

∂Wi

∂t
= Wi − (1 + iβ)|Wi |2Wi + (1 + iα)

DWi

h2
, (15)

with complex variables Wi(t) and i = 1,2, . . . ,L. This can be
regarded as a spatial discretization of the CGL equation (8),
where the parameter h denotes the lattice constant and thus
behaves similarly unless h is too large. For small h, the system
is a good approximation of the CGL equation, and hence the
decoupling of the physical and spurious modes takes place in
the same manner as we have studied in Sec. III. Increasing h,
besides degrading the correspondence to the CGL equation,
amounts to increasing the chain length hL and thus leads to an
increase in the number of physical modes. Moreover, Kuptsov
and Parlitz [38] reported that, as the number of physical
modes increases with h at the positive end of the Lyapunov
spectrum, another set of modes appears at the negative end,
which are hyperbolically connected within themselves and
whose number also increases with h. Isolated steps of the
spurious modes being replaced from both ends, the authors
argued that the two groups finally meet each other and the
strict hyperbolic decoupling between them is lost for large h.
However, their claim is based solely on the observation of
the structure of the CLVs and the time fraction of the DOS
violation with a fixed τ [38,39], which cannot fully determine
hyperbolic decoupling. Therefore, here we revisit this problem,
performing a complete analysis to clarify the nature of the
hyperbolic decoupling in this system, and explain this rather
peculiar behavior reported by Kuptsov and Parlitz.

In the following, we take the same parameter values
as Kuptsov and Parlitz [38], namely, α = −2.0 and β =
3.0, which correspond to the amplitude turbulence regime
(cf. Sec. III B), and vary the value of h. We fix the system
size at L = 32 and adopt PBC, Wi+L = Wi . Kuptsov and
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FIG. 24. (Color online) Lyapunov spectrum for the CGL lattice
(15) with varying h. The numerically obtained spectra are shown
by the symbols, while the black line indicates the spectrum of
the contribution from the coupling term under the Fourier mode
approximation for h = 0.5 (see text). The Kaplan-Yorke dimension
is about 8.8, 11.6, and 14.7 for h = 0.5, h = 0.65, and h = 0.8,
respectively.

Parlitz used instead a no-flux boundary condition in Ref. [38],
but this difference in the boundary conditions intervenes
practically only in the multiplicity of the stepwise structure
of the Lyapunov spectrum, as we have seen in Sec. II. Time
integration is performed with the fourth-order Runge-Kutta
method and time step 0.01, over a period of about 2 × 105

after a transient of 2.5 × 104 is discarded.
Figure 24 shows the Lyapunov spectra of the CGL lattice

for varying h. As reported in Ref. [38], for small h the spectrum
exhibits the stepwise structure (black circles), but it arises in
the middle of the spectrum, as opposed to the CGL equation
for which the steps continue up to the end of the spectrum. In
the CGL lattice, they are instead sandwiched by two smooth
regions. With increasing h, both of these smooth regions grow
(green diamonds in Fig. 24) and finally merge (red squares),
replacing all the steps in the spectrum. The power spectra of
the CLVs in Fig. 25 show that the steps here are again due to
the sinusoidal structure of the CLVs, as evidenced by the sharp
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FIG. 25. (Color online) Spatial power spectrum Sj (k) of the CLVs
for the CGL lattice with h = 0.5 (a) and h = 0.8 (b), shown as a
function of the (integer) wave number k and the Lyapunov index j .
Given that Sj (k) and Sj (−k) are statistically equivalent, their average
is shown in the figure. Note that the color plots are in different linear
scales for the sake of clearity.

peaks for the stepwise modes in Fig. 25(a), while CLVs in the
two smooth regions do not have obvious wavy structure.

Analyzing hyperbolicity properties of this system reveals
that, for small h, the Lyapunov spectrum splits into three
regions, basically according to its stepwise structure (Fig. 26).
The first gap in the stepwise region already exhibits clear
hyperbolic decoupling of the two modes at the edge, namely,
those of indices 22 and 23; for them the CLV angle distribution
ρv(θ ) is bounded with a decay faster than exp(−const/θ ) in
the tail [black, innermost line and symbols in Figs. 26(a) and
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FIG. 26. (Color online) Hyperbolicity properties for the CGL
lattice with h = 0.5. (a) Angle distributions ρv(θ ) for neighboring
CLVs of indices (22,23),(46,47),(50,51), and (48,49) from innermost
to outermost curve. (b) ρv(θ ) against 1/θ . The ordinate is averaged
over both sides of the distribution. The order of the curves is the
same as in (a) from lower left to upper right. (c) Angle distribution
ρs(φ) between the physical subspace (1 � j � Nph) and the spurious
one (Nph + 1 � j ) with Nph = 22 (black solid line). The red dashed
line shows the angle distribution between the subspaces of indices
1 � j � 46 and 47 � j � 64, showing the hyperbolic isolation of
the tangled spurious subspace. (d) The same plots as (c) but shown
against 1/φ (black circles for the physical and spurious subspaces,
and red squares for the other). (e) Time fraction ν(j,j+1)

τ of the
DOS violation for pairs of neighboring Lyapunov exponents as a
function of τ . (f) Time fraction ν(j1,j2)

τ of the DOS violation for
arbitrary pairs with τ = 3. The black color indicates ν(j1,j2)

τ = 0,
that is, hyperbolically isolated pairs. The red dashed lines indicate
the threshold Nph = 22 between the physical and spurious modes
and that between the stepwise spurious modes 1 � j � 46 and the
tangled spurious modes 47 � j � 64.
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26(b)], and the time fraction of the DOS violation ν(22,23)
τ

decreases faster than exponentially [black circles in Fig. 26(e)].
This fixes the number of physical modes at Nph = 22. The
decoupling holds similarly for any pair of CLVs sandwiching
this threshold [Fig. 26(f)], as well as between the physical and
spurious subspaces, defined at this index [black solid line and
circles in Figs. 26(c) and 26(d)].

The spurious subspace in this system, however, consists of
the central stepwise region and the smooth region at the end
of the Lyapunov spectrum (Fig. 24). In the former, quartets
of Lyapunov modes are isolated from all the other modes
[Fig. 26(f)] as is usually the case for the spurious modes,
while in the latter, specifically here for indices larger than
46, the spurious modes are internally connected [Figs. 26(a),
26(b), 26(e), and 26(f)] in a way similar to the mixed spurious
modes in the CGL phase turbulence [see, e.g., Fig. 18(b)].
These are the modes found by Kuptsov and Parlitz [38], though
in their work there remained ambiguity in the hyperbolicity
properties as discussed above. Here we confirm that these
modes are indeed connected internally, but never with any
physical or stepwise spurious mode, both from the DOS
assay with varying τ and from the CLV angle distribution
[Figs. 26(a), 26(b), 26(e)]. For this property, we call these
modes tangled spurious modes. The subspace composed of
them is also hyperbolically isolated from its complementary
[red dashed line and squares in Figs. 18(c) and 18(d)]. One
should be reminded that the difference between the tangled
spurious modes and the physical ones lies in the sign of their
Lyapunov exponents; while the exponents for the physical
modes can take any sign, those for the spurious modes are
always negative, and thus they decay without intervening
in the dynamics even if they are internally connected. The
effective dimension of the system is therefore always given by
the number of the physical modes, Nph, without contribution
from the tangled spurious modes.

The appearance of the tangled spurious modes is, in fact,
again, due to the discrete Laplacian operator of the coupling
term in Eq. (15), but it takes place in a different manner as the
tent coupled-map lattice because of the continuous time. Here,
if we take into account only the coupling term, its growth rate
is simply given by the real part of its eigenvalues, specifically
� = −(2/h2)[1 − cos(2πk/L)] for the eigenmodes e2π iki/L.
It is monotonic with respect to |k|, since |k| varies only up
to L/2, and hence so is the peak wave number of the CLV
power spectra in the stepwise region of the Lyapunov spectrum
(Fig. 25, to be compared with Fig. 22). The values of the
Lyapunov exponent in this region are well approximated by �

given above with the corresponding k (black line in Fig. 24).
By contrast, for larger k or j , the gap in � between different
k shrinks, as opposed to the case of the continuous Laplacian
operator. This facilitates the order exchange of the Lyapunov
exponents, that is, the violation of the DOS, due to their
intrinsic fluctuations from the dynamics, and thus produces
the tangled spurious modes.

With increasing h, both physical and tangled spurious
modes increase their numbers, replacing the steps of the
spurious modes in between (cf., Fig. 24). This finally gives
rise to the coalescence of the two groups; as soon as the last
physical mode and the first tangled spurious one encounter,
all the modes are connected and thus become physical modes.
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FIG. 27. (Color online) Hyperbolicity properties for the CGL
lattice with h = 0.8. (a) Angle distributions ρv(θ ) for all pairs of
neighboring CLVs. Indicated by the arrows are the distributions
for the pairs including either or both of the two Lyapunov modes
with �(j ) = 0. All the distributions except the one for the two zero
Lyapunov modes, shown by the bold arrow, have finite densities
at θ = 0 and π . (b) Time fraction ν(j1,j2)

τ of the DOS violation for
arbitrary pairs with τ = 5. The black color indicates ν(j1,j2)

τ = 0, that
is, hyperbolically isolated pairs.

The case for h = 0.8 is shown in Fig. 27. All the CLV angle
distributions have finite densities at θ = 0 and π except for
those concerning one or both of the two zero Lyapunov modes
[Fig. 27(a)]. The overall connection of the Lyapunov modes
is also confirmed form the violation of the DOS [Fig. 27(b)].
That is to say, with increasing h, the number of the physical
modes, or the inertial manifold dimension as we conjecture,
is suddenly doubled when the tangled spurious modes join
the physical manifold. Although such a large value of h

(around 0.7 in this case) corresponds to a somewhat unphysical
situation when we view the CGL lattice as an approximation
to the original CGL equation, the physical implication and
consequence of this “crisis” remain to be clarified.

V. 2D KURAMOTO-SIVASHINSKY EQUATION

A. Definition and numerical scheme

In the previous sections we have investigated the physical-
spurious decoupling in 1D dissipative systems. Given the
generality of our finding, and also the general existence of
a finite-dimensional inertial manifold in dissipative systems,
one expects that the same decoupling should also take place in
systems of higher dimensions. This is indeed the case, as we
shall demonstrate in this section for the 2D KS equation as a
generic example.

The 2D KS equation is defined for a real-valued field
u(x,y,t) as [40]

∂u

∂t
= −∇2u − (∇2)2u − 1

2
(∇u)2, (16)

with ∇ ≡ (∂/∂x,∂/∂y), x ∈ [0,Lx], and y ∈ [0,Ly]. Here we
adopt PBC u(x,y,t) = u(x + Lx,y,t) = u(x,y + Ly,t) with
L ≡ Lx = Ly = 24 for the sake of simplicity. For integration
we use the same operator-splitting method as for the 1D KS
equation, with time step 0.005, and the pseudospectral method,
with kcut = 10 × 2π/L, that is, with 11 × 11 Fourier modes.
Integration is performed over a period of roughly 2 × 105 after
discarding a transient period of 1200.
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FIG. 28. (Color online) Lyapunov spectrum for the 2D KS
equation. The red dashed line shows the values of �(j ) estimated from
the dominating wave number (kx,ky) assigned trivially by the index
(see text). (Left inset) Close-up of the beginning of the spectrum.
(Right inset) Lyapunov exponent �(j ) vs k2 − k4, where k2 ≡ k2

x + k2
y

is the square of the peak wave number for the power spectrum of the
j th CLV (see Fig. 29). Blue crosses and black circles correspond to
the physical and spurious modes, respectively. The red dashed line
indicates �(j ) = k2 − k4. The Kaplan-Yorke dimension in this case
is about 25.1.

B. Results

For L = 24 the 2D KS equation shows spatiotemporal
chaos as in the 1D counterpart studied in Sec. II. This leads
to a similar structure of the smooth region of the Lyapunov
spectrum [left inset of Fig. 28; cf. Fig. 1(b)], which consists
of physical Lyapunov modes carrying information on the
dynamics. As for the spurious region, despite its apparently
intricate structure in contrast with the 1D spectrum [compare
Fig. 28 with Fig. 1(a)], we find that the modes therein possess
essentially the same trivial properties, as shown below.

First, unlike the physical modes which show relatively
broad power spectra similar to the dynamics [Figs. 29(a)–
29(d)], each spurious mode has a spectrum S(kx,ky)
sharply peaked around a certain wave number k ≡

√
k2
x + k2

y

[Figs. 29(e)–29(f)], which is large and increases with the index.
The value of its Lyapunov exponent �(j ) is then essentially
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FIG. 29. (Color online) Power spectrum S(kx,ky) of the trajectory
(a) and of the CLVs (b)–(f) for the 2D KS equation. The spectra are
shown for kx,ky ∈ [−kcut,kcut] with kcut = 10 × 2π/L.

determined by the linear terms of the 2D KS equation (16),
specifically, �(j ) = k2 − k4, as indeed confirmed in the right
inset of Fig. 28 (black circles). Moreover, as in the 1D KS
equation, the peak wave numbers (kx,ky) of the spurious modes
are trivially determined by the geometry: For a finite box of size
Lx × Ly , the wave numbers can take values kx = 2πnx/Lx

and ky = 2πny/Ly with intergers nx and ny . Their values are
then assigned to each mode in such a way that the resulting
Lyapunov exponent �(j ) = k2 − k4 decreases monotonically.
Taking into account the multiplicity for 2D PBC, this trivial
assignment yields a spectrum indicated by the red dashed line
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FIG. 30. (Color online) Hyperbolicity properties for the 2D KS
equation. (a) Time fraction ν(j1,j2)

τ of the DOS violation for arbitrary
pairs with τ = 0.2. The black color indicates ν(j1,j2)

τ = 0, that is, hy-
perbolically isolated pairs. The red dashed lines indicate the threshold
Nph = 121 between the physical and spurious modes. (b) Time frac-
tion ν(j,j+1)

τ of the DOS violation for pairs of neighboring Lyapunov
exponents as a function of τ . (c) Angle distributions ρv(θ ) for neigh-
boring CLVs of indices (89,90),(129,130),(109,110),(121,122), and
(137,138) from outermost to innermost curve. Notice that they are not
in order with respect to the index. (d) ρv(θ ) against 1/θ . The ordinate is
averaged over both sides of the distribution. The order of the curves is
the same as in (c) from upper right to lower left. (e) Angle distribution
ρs(φ) between the physical subspace (1 � j � Nph) and the spurious
one (Nph + 1 � j ) with Nph = 121 (green solid line). The red dashed
line shows the angle distribution ρs(φ) between the subspaces of
indices 1 � j � 109 and 110 � j . (f) The same plots as (e) but
shown against 1/φ (green diamonds for the physical and spurious
subspaces, and red squares for the other). Each color corresponds to
the same index pair throughout in the panels (b)–(f).
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in Fig. 28, which reproduces well the structure of the spurious
region.

To locate exactly the threshold between the physical and
spurious modes, one needs to measure the hyperbolicity
properties as in all the other cases. Figure 30(a) shows the time
fraction ν

(j1,j2)
τ of the DOS violation for arbitrary pairs (j1,j2).

Although internal connections are found for some neighboring
steps of spurious modes, which are probably caused by mixing
of several Fourier modes due to accidentally close values of the
Lyapunov exponent [see Figs. 29(d)–29(f)], an unambiguous
threshold is found at Nph = 121, for which ν

(j1,j2)
τ = 0 for all

the pairs with j1(j2) � Nph < j2(j1) even at the smallest τ we
used [red dashed line in Fig. 30(a)]. Varying τ does not unravel
the internal connections of spurious modes presumably, as
ν

(j1,j2)
τ decays in the fastest case exponentially [Fig. 30(b)],

whereas it would decay faster for a hyperbolically isolated
pair [see Figs. 13(a) and 18(a)].

The same conclusion is reached from the angle distributions
ρv(θ ) of the CLVs [Figs. 30(c) and 30(d)]. Pairs of CLVs for
physical modes can take any angles and experience rather
frequent tangencies, while the angle distribution for spurious
pairs is peaked around π/2 and decays quickly in the tail.
A closer look at this tail reveals that hyperbolically isolated
pairs, or those which fulfill the DOS, decay as ρv(θ ) ∼
exp(−const/θ ) or faster [two innermost plots in Fig. 30(d)]
in contrast with the slower decays found for pairs of the
physical modes (black circles and red squares) or the internally
connected spurious modes (blue triangles). The hyperbolic
decoupling at Nph = 121 is established by the same fast decay
of the angle distribution ρs(φ) between the two subspaces
defined thereby [green full curve and diamonds in Figs. 30(e)
and 30(f)]. Defining the threshold Nph at a false value leads
to a clearly slower decay in ρs(φ) [red dashed curve and
squares, obtained with the threshold corresponding to the red
line and squares in Figs. 30(b)–30(d)]. In short, the hyperbolic
decoupling between the physical manifold and the spurious
modes takes place in the same way as for the 1D systems, with
the peak wave numbers for the spurious modes distributed here
in 2D Fourier space.

VI. DISCUSSION

In the present paper, we have shown the hyperbolic de-
coupling of the tangent space in spatially extended dissipative
systems into a finite set of Nph physical modes characterizing
all the physically relevant dynamics, and a remaining set
of spurious modes, which represent trivial, exponentially
decaying perturbations. Physical and spurious modes are
characterized by the existence and absence, respectively, of
tangencies between the associated CLVs. In contrast to physi-
cal modes, which are densely connected to each other through
frequent tangencies, the spurious modes are hyperbolically
isolated from all the physical modes, and therefore solely
decay to zero without activating any physical modes. The
existence or absence of tangencies between Lyapunov modes
can be investigated both from the CLV angle distribution and
the violation of DOS. One can also take into account linear
combinations of physical or spurious modes by measuring the
angle between the two subspaces spanned by the physical and
spurious modes, respectively. This leads to the unambiguous

determination of the number of the physical modes, Nph.
We conjecture that this number corresponds to the minimal
dimension of the inertial manifold. Moreover, we have shown
that the hyperbolic decoupling between the physical and
spurious modes takes place quite generically in dissipative
systems, as we have found evidence in PDEs in one or higher
spatial dimensions, as well as lattice systems with continuous
or discrete time.

A few remarks about related earlier studies are in order. As
already mentioned, the stepwise structure of the Lyapunov
spectrum in the spurious region was already reported by
Garnier and Wójcik for CGL amplitude turbulence, leading
them to the conjecture that these are inactive Lyapunov
exponents [36]. This is pertinent as we have revealed in the
present study, but one should be reminded that the stepwise
Lyapunov spectrum solely does not define or indicate the
spurious modes. The steps do not form at a single well-defined
threshold index: They are actually slightly inclined and get
flatter and flatter as one goes deeper into the spurious region.
As a matter of fact, the physical region typically extends to the
first few steps of the spectrum: For the 1D KS system studied
here the steps begin at j = 40 but the spurious modes are from
j = 44. This gap can be quite large; it is found to be 14 for the
coupled tent maps studied in Sec. IV A. The formation of the
steps is only a consequence of the sharp power spectrum and
the choice of the boundary conditions.

In a different work, Ikeda and Matsumoto studied the
projection of the dynamics onto Fourier modes or on the Gram-
Schmidt vectors associated with the Lyapunov modes [41].
They measured in particular information-theoretic quantities
and argued that information does not flow from a high wave
number region to a lower wave number region. However,
similarly to Lyapunov exponents, Gram-Schmidt vectors
or Fourier modes alone cannot characterize the separation
between physical and spurious modes, and thus cannot provide
the exact index of the threshold. It is the CLVs that bear the
true physical properties of tangent space and thus are able
to define unambiguously the physical and spurious Lyapunov
modes from their hyperbolicity properties.

Concerning the difference between the CLVs and the
Gram-Schmidt vectors, while it is clear that properties directly
linked to hyperbolicity such as angle distributions can only
be captured by CLVs, one may formally study DOS using
either CLVs or Gram-Schmidt vectors. However, clearly, the
finite-time Lyapunov exponents defined using the two sets
of vectors are a priori different for any finite times. Indeed,
although these two definitions seem to give qualitatively
similar results [42], it remains true that the mathematical
connection to hyperbolicity is only proved for CLVs [30,31].
Thus, in the absence of a detailed study on this point, one
cannot avoid computing CLVs for drawing any firm conclusion
on hyperbolicity properties of dynamical systems.

We should also mention that all the angle distributions and
the finite time Lyapunov exponents used for the determination
of DOS are not invariant against coordinate transformations
[43]. The splitting, however, between physical and spurious
modes is coordinate independent because by smooth trans-
formations a nonzero angle cannot be made to vanish and
vice versa. Furthermore, the type of the essential singularity
found in the angle distribution of critical pairs is invariant
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against smooth transformations of the coordinates, as can be
seen by considering how the angles are transformed with
the coordinates. A simple example is provided by the two
versions of the KS equations (1) and (16), which are connected
by a linear transformation [40]. These considerations further
emphasize the generality of our results.

Pursuing our conjecture that physical modes form the local
approximation of the inertial manifold, it is crucial to seek
a connection between CLVs and phase-space properties, and
in particular to find a way to construct the inertial manifold
using information of the physical CLVs. A straightforward
construction is a manifold locally defined at each point of the
trajectory by the physical CLVs, but strictly speaking, one also
has to consider the nonlinear growth of finite-size perturba-
tions, which is obviously not captured by Lyapunov analysis.
Because of this, it is still, in principle, possible to consider
a system in which hyperbolically isolated modes correspond
to active degrees of freedom, such as a lattice of uncoupled
hyperbolic maps as a trivial instance. However, given that the
generic systems we studied are by no means hyperbolic, it is
unlikely that that type of decoupling has any relation to the
hyperbolic decoupling studied in the present paper.

Our results are also important from a practical point of view.
Since the physical properties of the PDEs at stake are carried
by the physical modes, a faithful numerical integration needs to
incorporate at least as many degrees of freedom as the physical
modes. In other words, the number of the physical modes, Nph,
sets a lower bound for the spatial resolution of the simulations.
Moreover, the extensivity of Nph implies that measuring it in
systems of moderate size suffices to have reliable estimates
for arbitrarily large system sizes. Our results may also be
useful for controlling spatiotemporal chaos, in particular,
when determining the minimal number of constraints for full
control of such a system. A possible application in this context
would be the suppression of ventricular fibrillation, the major
reason of sudden cardiac death, for which promising schemes
have been proposed recently applying low amplitude electric

shocks over grids of points or lines [44]. The number of the
physical modes would then help determine an appropriate grid
resolution. Note, however, that, having no access to the basis
constituting the inertial manifold, one may actually need more
degrees of freedom or constraints than Nph to achieve faithful
simulations or full control of a dissipative system. It is therefore
of both fundamental and practical importance to elucidate the
structure of the inertial manifold in phase space in the line of
the present study.

In summary, we have shown, using Lyapunov analysis and,
in particular, CLVs, that the tangent space of spatially extended
dissipative systems can be divided into two parts: a finite-
dimensional manifold spanned by the physical modes bearing
all the physical information and the remaining set of spurious,
exponentially decaying modes. We have demonstrated that
the spurious modes are hyperbolically separated from all
the physical modes and hence satisfy DOS. The separation
holds for any linear combination of the physical or spurious
modes, as the minimal angle between the physical and spurious
subspaces is bounded away from zero. The number of physical
modes has been interpreted as the number of effective degrees
of freedom needed to describe the dynamics. This leads to
the conjecture that the physical modes constitute a local
approximation of the inertial manifold. We hope that these
results will trigger mathematical studies in order to put these
issues on a more rigorous basis. It is also interesting to perform
further numerical investigations of other dissipative systems
such as the Navier-Stokes equation, for which no rigorous
proof of the existence of an inertial manifold is known.
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