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This Letter reports on how the interfaces in the (1þ 1)-dimensional Kardar-Parisi-Zhang (KPZ) class

undergo, in the course of time, a transition from the flat, growing regime to the stationary one. Simulations

of the polynuclear growth model and experiments on turbulent liquid crystal reveal universal functions of

the KPZ class governing this transition, which connect the distribution and correlation functions for the

growing and stationary regimes. This in particular shows how interfaces realized in experiments and

simulations actually approach the stationary regime, which is never attained unless a stationary interface is

artificially given as an initial condition.
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Aside from their ubiquity in nature, surface growth
phenomena constitute an important situation of statistical
mechanics out of equilibrium, where scale invariance and
universal scaling laws arise generically [1]. These are
usually evidenced in the roughness of the interfaces, whose
amplitudewðL; tÞmeasured at the system (substrate) size L
and time t obeys the following power laws:

wðL; tÞ �
�
L� for L � L�
t� for L � L�;

ðL� � t1=zÞ; (1)

with scaling exponents �, �, z � �=� [1,2]. At the heart
of such growth processes is the Kardar-Parisi-Zhang (KPZ)
equation [3] and the corresponding universality class [1,3],
describing the simplest case without any conservation laws
and long-range interactions. For one-dimensional interfa-
ces, the KPZ equation reads
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2 þ ffiffiffiffi

D
p

�ðx; tÞ; (2)

where hðx; tÞ denotes the fluctuating height profile and
�ðx; tÞ white Gaussian noise with h�ðx; tÞi ¼ 0 and
h�ðx; tÞ�ðx0; t0Þi ¼ �ðx� x0Þ�ðt� t0Þ. The values of the
scaling exponents are exactly known in this one-
dimensional case [1,3,4]: the height fluctuation �h�
h�hhi grows as �h� t1=3 (� ¼ 1=3) and the correlation

length � as �� t2=3 (z ¼ 3=2). Specifically, h is described
by a rescaled random variable �ðx0; tÞ as

hðx; tÞ ’ v1tþ ð�tÞ1=3�ðx0; tÞ (3)

with a rescaled coordinate x0 � ðAx=2Þð�tÞ�2=3 and con-
stant parameters A � �=2D, � � A2�=2, and v1. The
KPZ-class exponents have indeed been reported in various
models and theoretical situations [1,3–5] as well as by a
growing number of experiments [6–12].

Studies on the (1þ 1)-dimensional KPZ class entered
an unprecedented stage in 2000, when Johansson [13] and
others [5] rigorously derived asymptotic distributions of
the height fluctuations for a few models. Among others, it

has brought about two outstanding outcomes. (i) The KPZ
class splits into a few subclasses according to the global
geometry of the interfaces, or, equivalently, to the initial
condition. These subclasses are characterized by different
distribution and correlation functions, whereas they share
the same scaling exponents. (ii) An unexpected link to
random matrix theory has been revealed. In particular,
the asymptotic distribution of � for the flat and curved
interfaces is given by the largest-eigenvalue distribution,
called the Tracy-Widom (TW) distribution [14,15], for the
Gaussian orthogonal ensemble (GOE) and the Gaussian
unitary ensemble, respectively [16]. The stationary inter-
faces also form a distinct subclass. To study it analytically,
one usually sets the initial condition hðx; 0Þ to be a sta-
tionary interface, which is simply the one-dimensional
Brownian motion for the KPZ equation [1]. The height
difference hðx; tÞ � hðx; 0Þ then grows as Eq. (3) and �
obeys the F0 distribution introduced by Baik and Rains
[17], as proved for the polynuclear growth (PNG) model
[16,17], for the totally asymmetric simple exclusion pro-
cess [18,19], and, very recently, for the KPZ equation [20].
The two-point correlation function being exactly derived
as well [18–22], this subclass is now firmly established like
the ones for the flat and curved interfaces.
Such a stationary regime is, however, never attained

within a finite time in an infinitely large system, unless a
stationary interface is artificially given as an initial condi-
tion. This is readily seen by recalling that the correlation

length grows as �� t2=3, whereas it is infinite for the
stationary interfaces. Therefore, in practical situations
starting from a smooth or uncontrolled initial profile, one
needs to elucidate how the interfaces approach the sta-
tionary regime in the course of time. This is achieved by
the present Letter. Simulations of the PNGmodel show that
the height difference of the flat interfaces exhibits a tran-
sition from the flat, growing regime to the stationary one.
We find scaling functions describing this crossover and
determine their functional forms, which smoothly connect
the GOE-TW and Baik-Rains F0 distributions. We also
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study the two-point correlation function and show how
those for the two subclasses interplay at finite times.
These results are quantitatively reproduced by experimen-
tal data on turbulent liquid crystal [8,9], indicating that
they are universal characteristics of the KPZ-class
interfaces.

First, we study the PNG model. Starting from a flat
substrate hðx; 0Þ ¼ 0, an interface experiences random
nucleation events at a uniform rate. On each nucleation,
the local height hðx; tÞ increases by one, producing a
plateau that expands laterally at constant speed. When
two plateaus encounter, they simply coalesce. For the
simulations in continuous space and time, we numerically
implement space-time representation used for analytical
derivation of the distribution function [16,17], with the
nucleation rate 2 per unit space and time and the plateau
expansion speed 1. This choice of the parameters corre-
sponds to v1 ¼ 2, A ¼ 2, and � ¼ 1. We impose the
periodic boundary condition with system size L ¼ 103

and realize 104 independent interfaces up to time 104.
The size is chosen to satisfy L � L� until t ¼ 104

[Eq. (1)] so that the system does not reach the saturated
regime, which is not the crossover addressed in this
Letter.

The quantity of interest is the height difference
�hðx;�t; t0Þ � hðx; t0 þ �tÞ � hðx; t0Þ, rescaled here as

�qðx;�t; t0Þ � �h� v1�t
ð��tÞ1=3 : (4)

By construction, �q!d �1 for t0 ! 0 and then �t ! 1,

while �q !d �0 for t0 ! 1 and then �t ! 1, where �1

and �0 are random variables obeying the GOE-TW and
Baik-Rains F0 distributions, respectively, with the factor

2�2=3 multiplied with the usual definition for the former
[16,17]. Figure 1(a) shows the first- to fourth-order cumu-
lants of �q, h�qnic, as functions of �t for different t0,
displayed with the values for the GOE-TWand Baik-Rains
F0 distributions (dashed and dotted lines, respectively).
The cumulants agree with those for the GOE-TW distribu-
tion as�t tends to infinity, while they indicate the values of
the Baik-Rains F0 distribution for large t0 and small
enough �t. The transition curves are found to collapse
very well when �t is scaled by t0 [Fig. 1(b)], except for
too small t0 and �t. In particular, for t0 ! 1, the cumu-
lants converge to a single set of functions, h�qnic !
�Qnð�t=t0Þ, satisfying �Qnð	Þ ! h�n

1ic for 	 ! 1 and
�Qnð	Þ ! h�n

0ic for 	 ! 0. One can indeed draw the

functions �Qnð	Þ by making histograms for h�qnic at
each �t=t0 with varying t0 and fitting their modes by,
e.g., spline functions, as shown by the black solid lines in
Fig. 1(b). Theoretical expressions of �Qnð	Þ are unknown,
because they involve time correlation which still remains
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FIG. 1 (color online). Crossover in the one-point distribution for the PNG model. (a), (b) First- to fourth-order cumulants h�qnic
against �t (a) and �t=t0 (b), for t0 ¼ 0, 0.1, 1, 10, 100, 1000, 4000, 7000 (increasing as the arrows indicate). The top (dotted) and
bottom (dashed) horizontal lines indicate the values for the Baik-Rains F0 and GOE-TW distributions, h�n

0ic and h�n
1ic, respectively.

The black solid lines in (b) show fitting to the collapsed curves (see text). The insets in (b) show the skewness and the kurtosis.
(c), (d) Asymptotic behavior of the data in (b) for small and large �t=t0. The data for t0 ¼ 0:1 are omitted because of the strong finite-
time effect. (e) Distribution of �q for given pairs of t0 and �t=t0.
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analytically unsolved. Asymptotically, the data suggest

h�0ic��Q1ð	Þ�	2=3, h�2
0ic��Q2ð	Þ�	1=2 for small 	

and �Q1ð	Þ�h�1ic�	�1=3, �Q2ð	Þ�h�2
1ic�	�2=3 for

large 	 [Figs. 1(c) and 1(d)]. While this convergence to
the GOE-TW distribution (	 ! 1) is analogous to that
of the height variable hðx; tÞ [9,23,24], the power laws
toward the Baik-Rains F0 distribution (	 ! 0) indicate

unusual exponents that need to be explained theoretically.
For higher orders n � 3, one needs better statistical accu-
racy to determine the asymptotics. In between the two
limits, the transition occurs earlier for larger n (� 4),
leading to interesting undershoot in the skewness

h�q3ic=h�q2i3=2c and the kurtosis h�q4ic=h�q2i2c [insets
of Fig. 1(b)]. Finally, this crossover can also be checked
directly in the distribution; Fig. 1(e) shows that the proba-
bility density functions of �q overlap for fixed �t=t0, and
that they shift from the Baik-Rains F0 to the GOE-TW
distributions as �t=t0 is increased.
Now we turn our attention to the two-point correlation

function, defined here by

Cðl;�t; t0Þ � h½�hðxþ l; t0 þ�tÞ � �hðx; t0Þ	2i; (5)

with �hðx; tÞ � hðx; tÞ � hhðx; tÞi. If one takes the station-
ary limit t0 ! 1 and then considers large �t, one has

C0ð
;�t; t0Þ � ð��tÞ�2=3Cðl;�t; t0Þ ’ gð
Þ with rescaled

length 
 � ðAl=2Þð��tÞ�2=3, where gð
Þ is the exact solu-
tion for the rescaled stationary correlation [20,21]. This is
tested in Fig. 2(a) with finite t0 and �t, where
�C0ð
;�t; t0Þ � C0ð
;�t; t0Þ � C0ð0;�t; t0Þ is compared
with gð
Þ � gð0Þ in the main panel. First, we note that
the data for fixed �t=t0 and different t0 overlap with each
other, confirming that �t=t0 is the only time scale that
controls the dynamics. Now, we focus on the data with
the smallest�t=t0 we have, namely,�t=t0 ¼ 0:006, shown
by solid symbols in Fig. 2(a) (top data set). They are found
to indicate the stationary correlation function for small 
 ,
with or without subtraction of C0ð0;�t; t0Þ (main panel and
inset, respectively). By contrast, for large 
 , the correlation
is governed by the spatial correlation of the flat interfaces,
namely, the Airy1 correlation g1ð
Þ, defined by g1ðvÞ �
hA1ðuþ vÞA1ðuÞi � hA1ðuÞi2 with the Airy1 process
A1ðuÞ [25–27]. To see this, we take �t ! 0 in Eq. (5)

and obtain, for large t0, �C0ð
; 0; t0Þ ¼ C0ð
; 0; t0Þ ’
2ð�t=t0Þ�2=3½g1ð0Þ � g1ðð�t=t0Þ2=3
Þ	. This function with
�t=t0 ¼ 0:006 is indicated by the dotted line in Fig. 2(a)
and accounts for the data with large 
 . In short, when�t=t0
is small enough,

C0ð
;�t; t0Þ ’
8><
>:
gð
Þ ð
 � 
cÞ
2

�
�t

t0

��2=3
�
g1ð0Þ � g1

��
�t

t0

�
2=3




��
ð
 � 
cÞ;

(6)

where the crossover length 
c is defined by the intersection
of the two functions. If �t=t0 is further decreased in
Fig. 2(a), the Airy1 branch moves away as ð�t=t0Þ�2=3

along both axes, leaving, asymptotically, only the station-
ary correlation gð
Þ as expected. Alternatively, if C and l
are rescaled by t2=30 instead of �t2=3, what remains asymp-
totically is the Airy1 correlation. For tiny but finite �t=t0,
the two branches are connected by C0 ’ 2
 .

We then study how the correlation function varies for
large �t=t0. The data series in Fig. 2(a) show that
�C0ð
;�t; t0Þ decreases with increasing �t=t0. In the limit

 ! 1, since h�hðxþ l; t0 þ�tÞ�hðx; t0Þi ! 0, we have

�C0ð
;�t; t0Þ ! 2ð��tÞ�2=3Ctð�t; t0Þ with Ctð�t; t0Þ �
h�hðx; t0 þ�tÞ�hðx; t0Þi, i.e., the time correlation func-
tion. Despite the lack of analytical solution, its short-time
behavior (�t=t0 � 1) is given by
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FIG. 2 (color online). Crossover in the correlation function for
the PNG model. (a) �C0ð
;�t; t0Þ against 
 for �t=t0 ¼ 0:006,
0.1, 1, 10, 100 (different sets of data, increasing from top to
bottom) and t0 ¼ 1, 10, 100, 1000, 4000, 7000 (different colors
and symbols, increasing from right to left). The dashed and
dotted lines indicate the stationary correlation and the Airy1
correlation as described in Eq. (6), respectively, with �t=t0 ¼
0:006 for the latter. The inset shows the data for �t=t0 ¼ 0:006
without subtraction of C0ð0;�t; t0Þ. (b), (c) Asymptotics of
�C0ð
;�t; t0Þ for 
 ! 1 (b) and 
 ! 0 (c). Blue circles are
the numerical estimates, obtained from the data with t0 ¼ 10 for
(b) and with various t0 for (c). The gray dots in (b) show the
values of the right-hand side of Eq. (9), where h�q2ic for t0 ¼ 10
and 100 is used as Q2ð	Þ.
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Ctð�t; t0Þ ’ ð�2t0trÞ1=3h�2
1ic

�
1� h�2

0ic
2h�2

1ic
�
1� t0

tr

�
2=3

�
;

(7)

with tr � t0 þ �t [9,28,29]. For �t=t0 � 1, numerical

[29] and experimental [9] studies showed Ctð�t; t0Þ ’
ð�2t0trÞ1=3Fð�t=t0Þ, with Fð	Þ � 	�1. They indicate

lim

!1

�C0ð
;�t; t0Þ �
� ð�t=t0Þ�2=3 ð�t=t0 � 1Þ
ð�t=t0Þ�4=3 ð�t=t0 � 1Þ (8)

and correctly account for the data [Fig. 2(b)]. Further, since
the second-order cumulant of the rescaled height differ-
ence, Q2ð�t=t0Þ, involves the two-point time correlation
Ctð�t; t0Þ, we also obtain for arbitrary �t=t0

lim

!1

�C0ð
;�t; t0Þ

¼ h�2
1ic

��
1þ 1

�t=t0

�
2=3 þ ð�t=t0Þ�2=3

�
�Q2ð�t=t0Þ:

(9)

This is also confirmed as shown by gray dots in Fig. 2(b).
In contrast to the long-length limit, one cannot a priori

predict how the short-length limit 
 ! 0 of �C0ð
;�t; t0Þ
depends on �t=t0. The data in Fig. 2(a) suggest
�C0ð
;�t; t0Þ � 
2 for any �t=t0. Figure 2(c) shows that
the coefficient of this quadratic term varies as

lim

!0

�C0ð
;�t; t0Þ
�2 ¼ 1

2

@2C0

@
2

��������
¼0

’
� g00ð0Þ=2 � 1:085 ð�t=t0 � 1Þ
cð�t=t0Þ�4=3 ð�t=t0 � 1Þ;

(10)

with a constant c and the second derivative g00ð0Þ, which
naturally arises since C0ð
;�t; t0Þ ! gð
Þ for �t=t0 ! 0.
To examine the other limit, let us note

1

2

@2C0

@
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��������
¼0
¼ðA=2Þ�2ð��tÞ2=3

	
@h

@x
ðx;t0þ�tÞ@h

@x
ðx;t0Þ



;

which is simply time correlation in the slope of the inter-
face. It is suggestive that the short- and long-length limits
of �C0ð
;�t; t0Þ are governed by the slope-slope and
height-height time correlations, respectively, decaying
with the same power in the rescaled units [Eqs. (8) and
(10)]. The results may also remind us of the spacelike and
timelike paths argued in the literature [30,31], though
precise relation is yet to be clarified.

Finally, we test universality of the presented crossover,
analyzing experimental data of growing interfaces in tur-
bulent liquid crystal. While the readers are referred to
Refs. [8,9] for detailed descriptions, in this series of
work the author and a co-worker studied planar evolution
of borders between two distinct regimes of spatiotemporal

chaos, called the dynamic scattering modes 1 and 2, in the
electroconvection of nematic liquid crystal. The interfaces
grow under high applied voltage, clearly exhibiting,
besides the exponents, the distribution and correlation
functions for the flat and curved KPZ-class interfaces
[8,9]. Here, we employ the data for 1128 flat interfaces
used in Ref. [9] and perform the crossover analyses devel-
oped in the present study.
Figure 3 shows the results. The nth-order cumulants of

the rescaled height difference �q [Eq. (4)] with various t0,
which sufficiently fall apart as functions of �t [see, e.g.,
inset of Fig. 3(a)], collapse reasonably well when plotted
against �t=t0 [Fig. 3(a)], despite a rather strong finite-time
effect for n � 2. The collapsed data are found asymptoti-
cally on top of the fitting curves obtained for the PNG
model, Qnð�t=t0Þ (black solid lines). This implies that
Qnð	Þ are universal functions of the KPZ class describing
the crossover in question, and so is the distribution function
of �q parametrized by �t=t0. The undershoot in the skew-
ness is also confirmed experimentally [Fig. 3(b)], while it
was not clearly identified for the kurtosis because of larger
statistical error (not shown). Moreover, extrapolation of
the finite-time corrections in the cumulants allows us to
roughly estimate the time needed for direct observation
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FIG. 3 (color online). Crossover in the liquid-crystal experi-
ment. (a), (b) Cumulants (a) and skewness (b) against �t=t0 with
t0 ¼ 2, 6, 10, 18, 30, 54, 60 s (from right to left). The inset shows
h�qic against �t. The dotted and dashed lines indicate the values
for the Baik-Rains F0 and GOE-TW distributions, respectively.
The solid curves show the fitting to the PNG data obtained in
Fig. 1(b). (c) Rescaled correlation function �C0ð
;�t; t0Þ against

 for given t0 and �t=t0 (�t=t0 increases from top to bottom).
The red dashed and black dotted lines indicate the stationary and
Airy1 correlation functions as described in Eq. (6), respectively,
the latter being set with �t=t0 ¼ 0:006. The three black solid
lines trace PNG data in Fig. 2(a) with corresponding values
of �t=t0.
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of the Baik-Rains F0 distribution, longer than 103 s here,
which is unfortunately unreachable in the current
setup [8,9].

The results on the correlation function are also repro-
duced experimentally [Fig. 3(c)]. The functional form is
parametrized solely by �t=t0 (see two data sets for
�t=t0 ¼ 10�1 overlapping with each other) and agrees
very well with the one obtained for the PNG model (black
solid lines). In particular, the crossover between the sta-
tionary and Airy1 correlations [Eq. (6)] is clearly con-
firmed for small enough �t=t0 (top yellow data set).

In summary, we have studied the flat-stationary cross-
over in the KPZ class, which takes place gradually in time.
Analyzing numerical and experimental data, we have
found and determined universal functions describing the
cumulants and the two-point correlation during this cross-
over. These functions show multifaceted relations to the
analytically unsolved time correlation, and hence may
provide an important clue toward its solution. Seeking a
possible connection to analogous, mathematically tractable
crossover in space [5] is another interesting issue left for
future studies. Besides such fundamental importance, our
results also answer a practical question of how interfaces
realized in experiments and simulations approach the sta-
tionary regime, which is never attained without full control
on the initial condition.
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Poincaré B 48, 134 (2012).
[32] F. Bornemann, Math. Comput. 79, 871 (2010).

PRL 110, 210604 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
24 MAY 2013

210604-5

http://dx.doi.org/10.1088/0305-4470/18/2/005
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevA.16.732
http://dx.doi.org/10.1103/PhysRevA.16.732
http://dx.doi.org/10.1088/1751-8113/43/40/403001
http://dx.doi.org/10.1088/1742-5468/2010/11/P11013
http://dx.doi.org/10.1142/S2010326311300014
http://dx.doi.org/10.1142/S2010326311300014
http://dx.doi.org/10.1143/JPSJ.66.67
http://dx.doi.org/10.1103/PhysRevLett.79.1515
http://dx.doi.org/10.1103/PhysRevLett.79.1515
http://dx.doi.org/10.1103/PhysRevE.64.036101
http://dx.doi.org/10.1103/PhysRevLett.104.230601
http://dx.doi.org/10.1103/PhysRevLett.104.230601
http://dx.doi.org/10.1038/srep00034
http://dx.doi.org/10.1007/s10955-012-0503-0
http://dx.doi.org/10.1103/PhysRevE.82.031903
http://dx.doi.org/10.1103/PhysRevE.82.031903
http://dx.doi.org/10.1103/PhysRevE.84.021917
http://dx.doi.org/10.1103/PhysRevE.84.021917
http://dx.doi.org/10.1103/PhysRevLett.110.035501
http://dx.doi.org/10.1103/PhysRevE.67.051306
http://dx.doi.org/10.1103/PhysRevE.67.051306
http://dx.doi.org/10.1007/s002200050027
http://dx.doi.org/10.1007/BF02100489
http://dx.doi.org/10.1007/BF02100489
http://dx.doi.org/10.1007/BF02099545
http://dx.doi.org/10.1103/PhysRevLett.84.4882
http://dx.doi.org/10.1103/PhysRevLett.84.4882
http://dx.doi.org/10.1023/A:1018615306992
http://dx.doi.org/10.1007/s00220-006-1549-0
http://dx.doi.org/10.1007/s00220-006-1549-0
http://arXiv.org/abs/1209.0116
http://dx.doi.org/10.1103/PhysRevLett.108.190603
http://dx.doi.org/10.1103/PhysRevLett.108.190603
http://dx.doi.org/10.1007/s10955-013-0710-3
http://dx.doi.org/10.1023/B:JOSS.0000019810.21828.fc
http://dx.doi.org/10.1002/cpa.20316
http://dx.doi.org/10.1002/cpa.20316
http://dx.doi.org/10.1007/s10955-011-0318-4
http://dx.doi.org/10.1103/PhysRevE.85.010601
http://dx.doi.org/10.1103/PhysRevE.85.010601
http://dx.doi.org/10.1088/0305-4470/38/33/L01
http://dx.doi.org/10.1007/s00220-008-0515-4
http://dx.doi.org/10.1007/s00220-008-0515-4
http://dx.doi.org/10.1103/PhysRevA.45.638
http://dx.doi.org/10.1103/PhysRevA.45.638
http://dx.doi.org/10.1209/epl/i1999-00125-0
http://dx.doi.org/10.1088/1742-5468/2008/07/P07022
http://dx.doi.org/10.1214/11-AIHP440
http://dx.doi.org/10.1214/11-AIHP440
http://dx.doi.org/10.1090/S0025-5718-09-02280-7

