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Pair correlation of dilute active Brownian particles: From low-activity dipolar correction to
high-activity algebraic depletion wings
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We study the pair correlation of active Brownian particles at low density using numerical simulations and
analytical calculations. We observe a winged pair correlation: While particles accumulate in front of an active
particle as expected, the depletion wake consists of two depletion wings. In the limit of soft particles, we obtain
a closed equation for the pair correlation, allowing us to characterize the depletion wings. In particular, we
unveil two regimes at high activity, where the wings adopt a self-similar profile and decay algebraically. We also
perform experiments of self-propelled Janus particles and indeed observe the depletion wings.
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I. INTRODUCTION

The pair correlation function has played a pivotal role in
our understanding of the structure of equilibrium liquids [1];
the same is to be expected for active liquids, such as bacterial
colonies [2,3], flocks of starlings [4,5] or colloidal rollers
[6–8], or assemblies of Janus particles [9–12]. It has indeed
been used to quantify the order in bacterial colonies [2] and to
infer the interactions in bird flocks [4,5]. However, its broad
utilization is precluded by the lack of analytical results on
its general form, notably little is known about its regions of
positive and negative sign, even in the homogeneous phase
and in the absence of alignment interactions [13–15].

The theoretical prediction of the pair correlation is indeed
an important challenge, which has been undertaken for min-
imal models without alignment, such as active Brownian or
Ornstein-Uhlenbeck particles (ABP or AOUP). So far, even
for these minimal models, the study of the pair correlation
focused mostly on the explanation of the phase separation that
occurs at high activity [16–18]. Two main approaches have
been followed. The first consists in computing the angular
average of the pair correlation due to an activity represented
by a persistent translational noise. An attractive term has been
found and interpreted as a higher tendency to phase separate
[15,19,20]. However, this approach does not, by nature, retain
the angular dependence of the correlations. The second ap-
proach consists of a quantitative prediction of the polar pair
correlation using a closure of the many body Smoluchowski
equation leading to the effective velocity, whose decrease with
density may explain the phase separation [13,14,21–23]. This
method requires a numerical solution of nonlinear equations
and does not provide explicit predictions. Finally, up to now
there is no analytical characterization of the pair correlation.

*vincent.demery@espci.psl.eu

In this article, we address the global shape of the pair
correlation of ABP in the dilute and homogeneous regime
[17]. We first observe a winged pair correlation in numerical
simulations of ABP: While particles accumulate in front of an
active particle as expected, the depletion wake consists of two
depletion wings (Fig. 1). We then resort to a linearized Dean
equation to obtain a closed equation for the pair correlation.
Solving this equation under different limits, we unveil three
different regimes for the correlations, which we organize on a
phase diagram. In two regimes, the wings adopt a self-similar
profile and decay algebraically. Last, we measure the pair
correlation in experiments of self-propelled Janus particles
and qualitatively observe the depletion wings.

II. MODEL AND NUMERICAL SIMULATIONS

First, we perform numerical simulations of ABP in di-
mension two interacting via a pairwise harmonic potential
V (r) = ε

2 (1 − r/a)2 for r < a, where ε sets the interaction
strength and a is the particle diameter [Fig. 1(a), see Appendix
A1 for details]. The position ri(t ) and orientation θi(t ) of the
particle i follow

ṙi = −γ −1∇i

∑
j �=i

V (ri − r j ) + U êθi +
√

2Dηi, (1)

θ̇i =
√

2Drνi, (2)

where U is the propulsion velocity, D is the translational
diffusion coefficient, Dr is the rotational diffusion coefficient,
êθ is the unit vector with polar angle θ, and ηi and νi are
normalized Gaussian white noises. The diameter a of the par-
ticles and the friction coefficient γ can be set to one through a
rescaling; the parameters ε, U , D, and Dr are given in arbitrary
units and only their relative values are important. We use a
low area fraction φ � 0.04 to focus on two-body effects and
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FIG. 1. (a) Snapshot of numerical simulations of ABP. The
red arrows indicate the orientations of the particles. The blue
axes represent the local frame used to compute the pair correla-
tions. (b–e) Evolution of the correlations with decreasing Dr . φ =
0.04 and ε : D : U = 1 : 0.1 : 10, and Dr = 10, 1, 0.1, 0.01 (Pe =
10, 31.6, 100, 316). Top: simulations. Bottom: numerical integration
of Eq. (7).

remain in the homogeneous phase [16–18] (see discussion in
Appendix A3).

The polar pair correlation C(r, θ, θ ′) is defined from the
density field for the positions ri(t ) and orientations θi(t ),
f (r, θ, t ) = ∑

i δ(ri(t ) − r)δ(θi(t ) − θ ):

C(r, θ, θ ′) = 〈 f (0, θ ) f (r, θ ′)〉
[ρ/(2π )]2

− δ(r)δ(θ − θ ′)
ρ/(2π )

− 1, (3)

where ρ = 4φ/(πa2) is the density; the correlation of a par-
ticle with itself is removed in the second term, and the r →
∞ limit is removed in the third. From rotational invariance,
C(r, 0, θ ′) contains all the information in C(r, θ, θ ′). We focus
on the density of particles in the reference frame of a given
particle (blue axes in Fig. 1(a) [2]), which retains the polar
character of the correlations:

B(r) = 1

2π

∫ 2π

0
C(r, 0, θ ′)dθ ′. (4)

Note that if translational and rotational degrees of freedom
decouple, for instance, in absence of propulsion, the isotropic
pair correlation is recovered: C(r, θ, θ ′) = B(r) = h(r) [1].

The polar pair correlation B(r) in the simulations for
ε : D : U = 1 : 0.1 : 10, and Dr = 10, 1, 0.1, 0.01 is shown
in Figs. 1(b)–1(e). At large rotational diffusion, Dr = 10,
the correlation is nearly axisymmetric and decays quickly
[Fig. 1(b)]. At smaller rotational diffusion, Dr � 1, as ex-

FIG. 2. Phase diagram showing the different regimes as a func-
tion of Péclet number and observation length. Blue arrows indicate
the regimes explored in the simulations [Figs. 1(b)–1(e)] and in the
experiments (Fig. 4), and the observation length ranges from the
diameter a of the particles to 10a. Red arrows point to the limiting
regimes explored in Fig. 3.

pected, the correlation is positive in front of the particle,
indicating an accumulation of other particles. However, while
a depletion wake is expected behind the active particle, as
in active microrheology [24,25] or in driven binary mixtures
[26], the depletion concentrates in two “wings” on the sides
of the particle. As Dr decreases, the characteristic depletion
wings appear, their length increases and their curvature de-
creases.

III. THEORY AND LIMITING REGIMES

To rationalize these different regimes, we consider the
lengthscales and dimensionless parameters of the problem.
In the dilute limit considered here, the structure of the pair
correlation beyond the size of a particle is controlled by the
parameters U , D, and Dr , which combine into three length-
scales,


r = D

U
, 
U =

√
D

Dr
, 
p = U

Dr
, (5)

whose relative values are set by the Péclet number,

Pe = U√
DDr

= 
U


r
= 
p


U
. (6)

The Péclet number varies between Pe = 10 and 316 in
Figs. 1(b)–1(e). For spherical particles the coefficients D and
Dr are related through Dr ∼ D/a2; here we regard them as
independent parameters to disentangle the effects of transla-
tional and rotational diffusion. The form of the pair correlation
thus depends on the Péclet number and the relative value
of the observation length r with the three lengthscales, so that
the numerical simulations can be placed on a parameter plane
(blue arrows in Fig. 2).

To account for the observed correlations and characterize
the shape of the depletion wings, we resort to a linearized
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FIG. 3. Limiting regimes. (a)–(c) Small propulsion (U → 0). (a) Numerical correlation (φ = 0.04 and ε : D : Dr : U = 1 : 0.1 : 0.5 :
0.05). (b) Cut of the previous correlation at radius r0 = 1.5 (dashed black line), and theoretical prediction (gray line). (c) Rescaled plot
of the first Fourier coefficient B1(r) for φ = 0.04 and ε : D : U = 1 : 0.1 : 0.05 for Dr = 0.1, 0.2, 0.5, 1 (blue to red), the gray line is the
theoretical prediction at large distance. (d), (e) No rotational diffusion (Dr = 0). (d) Numerical correlation (φ = 0.04 and ε : D : Dr : U = 1 :
0.1 : 0 : 10). (e) Rescaled horizontal cuts of the correlation from (d), the gray line is the theoretical prediction (8). (f), (g) No translational
diffusion (D = 0). (f) Numerical correlation (φ = 0.04 and ε : D : Dr : U = 1 : 0 : 0.1 : 10). (g) Rescaled horizontal cuts of the correlation
from (f) according to Eq. (10).

Dean equation for the density field f (r, θ, t ) [25–30], which
is valid for weak interactions. At low density, we show in
Appendix B1 that the pair correlation satisfies[

2D∇2 + Dr
(
∂2
θ + ∂2

θ ′
) + U (êθ − êθ ′ ) · ∇]

C = − 2

γ
∇2V.

(7)
Solving this equation numerically (Appendix C), we ob-
tain an excellent agreement with the numerical simulations
[Figs. 1(b)–1(e)]. We now show that this equation captures
the structure of the pair correlation by examining its limiting
regimes U → 0, Dr → 0, and D → 0.

For small propulsion velocity U , which corresponds to
the left side of the phase diagram, Eq. (7) can be solved
perturbatively as shown in Appendix B2. To order one in U ,
we get a dipolar correction to the equilibrium radial correla-
tion heq(r): B(r, θ ) = heq(r) + U cos(θ )B1(r), where the first
Fourier coefficient B1(r) decays exponentially over a length

U . This prediction is compared to the numerical simulations
in Figs. 3(a)–3(c); a quantitative agreement with the predic-
tion is obtained, without any adjustable parameter. Note that
at order U 2, an attractive correction to the equilibrium pair
correlation heq(r) is found, which is compatible with the re-
sults obtained when the activity is introduced in the form of a
colored noise [15,19,20].

We turn to the high-activity regime, and focus first on
the limit Dr = 0, where the wings are entirely deployed
[Fig. 3(d)]; this limit corresponds to the bottom right corner
of the phase diagram (Fig. 2). Equation (7) can be solved in
Fourier space (Appendix B3), yielding

B̃(k) = −k2Ṽ (k)

2πU

∫ 2π

0

dθ ′

2
rk2 + ik · (ê0 − êθ ′ )
. (8)

The integrand has the form of the correlations in a driven
binary mixture [26], and the integration over θ ′ mirrors that
here there are particles moving in all directions. At distances
below 
r , Eq. (8) yields a dipolar correlation, as in the low-
activity regime. Beyond 
r , the form of the correlations can
be obtained by performing the integral and focusing on the
singularity at the origin in Fourier space:

B(x, y) �
r�
r

Ṽ (0)

D0

1

y2
F

(
x



1/3
r |y|2/3

)
, (9)

where the explicit form of the scaling function F (u) is given
in Appendix B3. The scaling Eq. (9) can be tested by plot-
ting rescaled cuts of the correlation at different values of
y [Fig. 3(e)]; as predicted, the cuts collapse to the scaling
function F (u).

We now address the shape of the wings in presence of a
finite rotational diffusion Dr . We take the limit D = 0, which
corresponds to the top right corner of the phase diagram
(Fig. 2), where the only available lengthscale is the persis-
tence length 
p (Appendix B4). Beyond 
p, particles loose
the memory of their orientation and their correlation vanish.
Below 
p, the solution of Eq. (7) is dominated by angles close
to (θ, θ ′) � (0, 0) and (π, π ), and we obtain the following
scaling form:

B(x, y) �
r

p

Ṽ (0)

Dr


4
p

y4
G

(

1/3

p x

|y|4/3

)
; (10)

the function G can be obtained numerically. This prediction
is in very good agreement with the numerical simulations
[Figs. 3(f) and 3(g)]. Last, the transition with the scaling form
obtained in the limit Dr = 0 can be obtained by matching
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the widths of the two profiles, x ∼ 
1/3
r y2/3 [Eq. (9)] and

x ∼ 
−1/3
p y4/3 [Eq. (10)], leading to y ∼ √


r
p = 
U .
The structure of the correlations is now characterized

(Fig. 2). For Pe < 1, the activity generates a dipolar correction
to the equilibrium correlations for lengths r < 
U . For Pe > 1,
the dipolar correction crosses-over to depletion wings at a
scale 
r ; the shape of the wings is given by the scaling forms
Eq. (9) for 
r < r < 
U and Eq. (10) for 
U < r < 
p; the
wings decay exponentially beyond 
p. The behavior of the
correlations is summarized on the phase diagram (Fig. 2).

For weak interactions, we have obtained a quantitative
agreement between our predictions derived from Eq. (7) and
the numerical simulations. Moreover, the left-hand side of
Eq. (7), which controls the structure of the correlations, is also
present in the two-body Smoluchowski equation [22], which
is valid in the dilute limit for any interaction strength. We con-
clude that the structure of the correlations predicted here holds
in the dilute limit for any interaction strength, which we check
in Appendix A2 with numerical simulations of hard particles.

We finally note that, in practice, D and Dr are not taken as
independent parameters. For spherical particles, where D ∼
a2Dr , the Péclet number defined here takes the more common
forms Pe = aU/D = U/(aDr ), and 
U ∼ a. At small Péclet,
the dipolar correction, which decays over a length 
U , should
thus be barely observable. At large Péclet, depletion wings
with the shape Eq. (10) should be observed for a < r < 
p =
aPe. Some theoretical studies assume D = 0 [31–33] and de-
fine the Péclet number as Pe′ = U/(aDr ); here also depletion
wings with the shape Eq. (10) should be observed below 
p.

IV. EXPERIMENTS

To confront our findings to real systems, we perform ex-
periments with Janus particles, whose dynamics is similar to
that of ABP [10,34,35]. Our Janus particles are propelled by
a vertical AC electric field and swim in a two-dimensional
horizontal plane [36,37] (Appendix D, Fig. 4(a) and Movie 1
in the Supplemental Material). We estimate the experimental
values of U , D, and Dr in Appendix D3. This allows us to
place the experiments on the phase diagram (dark blue arrow
in Fig. 2), with a Péclet number Pe � 90: Depletion wings are
expected.

The measured pair correlation is shown in Fig. 4(b)
(additional figures for other values of the electric field are pro-
vided in Appendix D5). Depletion wings are present, showing

FIG. 4. Experiments. (a) Experimental image, indicating the de-
tected positions and orientations of the Janus particles (red dots and
arrows). Scale bar: 10 μm. (b) Pair correlation B(r).

that they are a robust feature of pair correlations of self-
propelled particles at high activity. At short range, qualitative
differences with the numerical simulations can be noted, such
as depletion behind the active particle (x < −a, y = 0) before
correlations turn positive. These differences can be attributed
to unavoidable hydrodynamic or electrostatic interactions
[11]. Depletion wings are present at larger distances, but their
decay cannot be characterized due to insufficient statistics.
Whether or not these wings follow the scaling laws predicted
here or exhibit different exponents is an open question.

V. CONCLUSION

We have unveiled two regimes where active polar parti-
cles without alignment interactions have a pair correlation
with a self-similar shape and an algebraic decay characterized
by anomalous exponents. In presence of velocity-orientation
coupling [12,38,39] or alignment interactions [6,11,12], we
may expect distinct scaling laws to appear in the correlations.
As we have shown, the correlations have a rich structure
even without three-body interactions, it would therefore be
instructive to measure them in a dilute configuration first, and
then to see how they evolve as density increases.
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APPENDIX A: NUMERICAL SIMULATIONS

1. Description

We consider N particles (N = 5000) in a square periodic

box of size L =
√

N
ρ

with ρ the density (L ∼ 300 at ρ = 0.05).

Initially the positions ri and the orientations θi of the particles
are assigned uniformly at random.

We use stochastic molecular dynamics and consider the
following Langevin equations:

ṙi = −∇i

∑
j �=i

V (ri − r j ) + U êθi +
√

2Dηi, (A1)

θ̇i =
√

2Drνi, (A2)

where U is the velocity, D the transitional diffusion, and Dr

the rotational diffusion. The mobility γ is set to 1. ηi and νi

are Gaussian white noises with unit variance. During a time
increment �t (�t = 0.05 for the simulations presented in the
article), the term

√
2Drνi generates an increment υ

√
2Dr�t

with υ a random number generated from a standard normal
distribution. Similarly for

√
2Dηi.

We use the following soft-sphere potential, where the di-
ameter a of a particle and the potential strength ε are set to
unity,

V (r) =
{

1
2 (1 − ‖r‖)2 if ‖r‖ � 1,

0 otherwise.
(A3)
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FIG. 5. Simulations in the limit cases Dr = 0 and D = 0 for dilute hard particles. (a) No rotational diffusion. Correlation B(r)
for ρ = 0.05, ε : D : Dr : U = 50 : 0.1 : 0 : 10. (b) Rescaled cuts with the exponents predicted in the article. (c) No translational
diffusion. Correlation B(r) for ρ = 0.02, ε : D : Dr : U = 50 : 0 : 0.1 : 10. (d) Rescaled cuts with the exponents predicted in the
article.

We let the system evolve for a time teq ∼ 500 before start-
ing to record the correlations. B(x) is then recorded with a
spatial resolution �x = 0.1, with one measure every �tc = 5,
during an overall time period T ∼ 5 × 105. The results are
averaged over 100 realizations of the system.

2. Simulations of dilute hard particles

The theoretical approach that we use is a linearized Dean
equation, a framework which is valid for weak interactions.
Consequently, the simulations that we compare to our theo-
retical results have relative values of potential strength and
velocity ε : U = 1 : 10. This means that the particles are able
to interpenetrate. In this weak interaction regime, we are able
to test quantitatively the scalings that we obtain.

That being said, it is interesting to test the scaling expo-
nents that we obtain on simulations in the regime of strong
interactions. We do it in Fig. 5 and find that indeed the cuts
of the correlation function obey the predicted scalings both
in the limit of low rotational diffusion and in the limit of
low translational diffusion. This leads us to state that the
scaling exponents that we found are robust. Note that the
limit curves are different from our prediction in the weak
interaction regime.

3. Extension of the dilute regime

Here we discuss the range of density ρ where the dilute
approximation that we use should be valid. We focus on hard

particles, and expect range of density to be wider for soft
particles. There are two ways to estimate where the dilute
regime sits. The first is to look at the low density branch
of the motility-induced phase separation (MIPS) line on the
phase diagram for ABP [17]. As MIPS is a many-body ef-
fect, the density should be far below this line to remain in
the dilute regime. For instance, for Pe = 100, ρMIPS � 0.18
(φMIPS � 0.14).

The second way is to look at measured pair correlations.
By definition, in the dilute regime the pair correlation does
not depend on the density. We plot the pair correlation for
densities ρ = 0.01, 0.02 and 0.05 for D = 0 and Pe′ = 100 on
Fig. 6. We observe an important difference between ρ = 0.02
and ρ = 0.05, while the difference between ρ = 0.01 and
ρ = 0.02 is much smaller. We conclude that the limit of the
dilute regime for this Péclet number sits around ρ � 0.02
(φ � 0.016).

APPENDIX B: THEORETICAL COMPUTATIONS

1. Equation for the correlations

a. Dean equation for active Brownian particles

The Langevin equations for active Brownian particles read

ṙi = −∇i

∑
j �=i

V (ri − r j ) + U êθi +
√

2Dηi, (B1)

θ̇i =
√

2Drνi, (B2)
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FIG. 6. Simulations in the limit case D = 0 for hard particles, ε : D : Dr : U = 50 : 0 : 0.1 : 10, for densities ρ = 0.01, 0.02, 0.05.

where D is the translational diffusivity, Dr is the rotational
diffusivity, and ηi and νi are Gaussian white noises of unit
variance. In this Appendix, we set the particle diameter a = 1
and the friction coefficient γ = 1.

We define the density in position-orientation space
f (r, θ, t ) as

f (r, θ, t ) =
N∑

i=1

∞∑
m=−∞

fi(r, θ + 2mπ, t ), (B3)

fi(r, θ, t ) = δ(ri(t ) − r)δ(θi(t ) − θ ). (B4)

We consider a smooth and fast-decaying test function
ϕ(r, θ ). By definition of fi,

ϕ(ri(t ), θi(t )) =
∫

dr
∫ ∞

−∞
dθ fi(r, θ, t )ϕ(r, θ ). (B5)

Then, the time derivative of ϕ(ri(t ), θi(t )) can be written in
two different ways:

d

dt
ϕ(ri(t ), θi(t )) =

∫
dr

∫ ∞

−∞
dθ

∂ fi

∂t
(r, θ, t )ϕ(r, θ )

=
∫

dr
∫ ∞

−∞
dθ fi(r, θ, t )(dt )−1dϕ(r, θ ),

(B6)

with the differential dϕ given by the Itô formula [40],

dϕ = ∇ϕ · dri + ∂ϕ

∂θ
dθi + 1

2
∇2ϕ(dri )

2 + 1

2

∂2ϕ

∂θ2
dθ2

i

+ ∂

∂θ
∇ϕ · dridθi (B7)

= ∇ϕ ·
{

−∇i

∑
j

V (ri − r j ) + U êθi

}
dt

+ Ddt∇2ϕ + Drdt
∂2ϕ

∂θ2
. (B8)

The differentials are computed from Eqs. (B1) and (B2) (we
assume ∇V (0) = 0). Performing integrations by part and re-
calling that ϕ is arbitrary, one obtains

∂ fi

∂t
= D∇2 fi + Dr

∂2 fi

∂2θ
+ ∇

(
fi

N∑
j=1

∇V (r − r j (t ))

)

− Ueθ · ∇ fi −
√

2D∇ fi · ηi −
√

2Dr
∂

∂θ
( fiνi ). (B9)

Using Eq. (B3) and rearranging the noises like Dean [27],
we finally obtain the following Dean equation for f (r, θ, t ),

∂

∂t
f (r, θ, t ) = −∇J(r, θ, t ) − ∂

∂θ
K (r, θ, t ), (B10)

with the currents

J(r, θ, t ) = −D∇ f (r, θ, t ) − f (r, θ, t )
∫ 2π

0
dθ (∇V ∗ f )(r, θ, t ) + f (r, θ, t )U êθ − f 1/2(r, θ, t )η(r, θ, t ), (B11)

K (r, θ, t ) = −Dr
∂

∂θ
f (r, θ, t ) − f 1/2(r, θ, t )ν(r, θ, t ). (B12)

The spatial convolution is defined by ( f ∗ g)(r) = ∫
dr′ f (r′)g(r − r′). η and ν are Gaussian white noises with correlations

〈ηα (r, θ, t )ηβ (r, θ, t )〉 = 2Dδαβδ(r − r′)δ(θ − θ ′)δ(t − t ′), (B13)

〈ν(r, θ, t )ν(r, θ, t )〉 = 2Drδ(r − r′)δ(θ − θ ′)δ(t − t ′). (B14)

b. Linearized Dean equation

The Dean equation for active Brownian particles is non-
linear with multiplicative noise. It is thus very difficult to
tackle. Our approximation consists in linearizing it around
an homogeneous density ρ which is the average density of

particles. We write

f (r, θ, t ) = ρ

2π
+

√
ρ

2π
φ(r, θ, t ). (B15)

The field φ is assumed to be of order 1 in ρ.
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At the lowest order, the Dean equation [Eq. (B10)] be-
comes linear with additive noise.

∂φ

∂t
=

[
D∇2 + Dr

∂2

∂θ2
− U êθ · ∇

]
φ

+ ρ

2π

∫ 2π

0
dθ ′(∇2V ∗ φ)(θ ′) + ∇ · η + ∂ν

∂θ
. (B16)

c. Equation for the correlations

We define the following correlations

C(r1, r2, θ1, θ2) = 〈φ(r1, θ1)φ(r2, θ2)〉, (B17)

C(r, θ, θ ′) = 1

ρ
{C(0, r, θ, θ ′) − δ(r)δ(θ − θ ′)}.

(B18)

One checks that the definition of C(r, θ, θ ′) is consistent with Eq. (1) in the main text. We use Itô calculus to compute the time
evolution of C:

C(r1, r2, θ1, θ2, t + δt ) − C(r1, r2, θ1, θ2, t )

= 〈φ(r1, θ1, t )δφ(r2, θ2, t )〉 + 〈δφ(r1, θ1, t )φ(r2, θ2, t )〉 + 〈δφ(r1, θ1, t )δφ(r2, θ2, t )〉. (B19)

Computing the terms from the linearized Dean equation [Eq. (B16)], one shows that

∂tC(r1, r2, θ1, θ2) = [
D

(∇2
1 + ∇2

2

) + Dr
(
∂2
θ1

+ ∂2
θ2

) − U
(
êθ1 · ∇1 + êθ2 · ∇2

)]
C(r1, r2, θ1, θ2)

+ ρ

2π

∫ 2π

0
dθ ′[∇2

1V ∗ C(r1, r2, θ
′, θ2) + ∇2

2V ∗ C(r1, r2, θ1, θ
′)
]

+ [
2D∇1∇2 + 2Dr∂θ1∂θ2

]
δ(r1 − r2)δ(θ1 − θ2). (B20)

We use the invariance of the system by translation and write the equation in terms of C(r, θ, θ ′),

∂tC(r, θ, θ ′) = [
2D∇2 + Dr

(
∂2
θ + ∂2

θ ′
) + U (êθ − êθ ′ ) · ∇]

C(r, θ, θ ′) + 2∇2V (r)

+ ρ

2π

∫ 2π

0
dθ ′′∇2V ∗ [C(r, θ, θ ′′) + C(r, θ ′′, θ ′)]. (B21)

The conventions are such that the pair correlation function C(r, θ, θ ′) is normalized with respect to the density ρ. Focusing
on the low density regime (ρ → 0), we can neglect the convolution of C with the potential V . The equation that we consider is

∂tC(r, θ, θ ′) =
ρ→0

[
2D∇2 + Dr

(
∂2
θ + ∂2

θ ′
) + U (êθ − êθ ′ ) · ∇]

C(r, θ, θ ′) + 2∇2V (r). (B22)

Note that for a passive system, the solution of this equation
is the direct correlation function (the one involved in the
Ornstein-Zernike equation). In the following, we are only
interested in the stationary correlations which satisfy the fol-
lowing linear partial differential equation:

[
2D∇2 + Dr (∂θ + ∂θ ′ ) + U (êθ − êθ ′ ) · ∇]

C(r, θ, θ ′)

= −2∇2V (r). (B23)

By rotational invariance, C(r, θ, θ ′) = C(R−θ · r, 0, θ ′ −
θ ). Like in the article, we define the “profile seen by a particle
in its reference frame,”

B(r) = 1

2π

∫ 2π

0
C(r, 0, θ ′)dθ ′. (B24)

2. Low activity

At low activity, U 
 1, one can expand C in power of U :

C(x, θ, θ ′) = C(0)(x) + UC(1)(x, θ, θ ′)

+ U 2C(2)(x, θ, θ ′) + . . . (B25)

Let us write Eq. (B23) in Fourier space, using the conven-
tion C̃(k, θ, θ ′, t ) = ∫

dre−ikrC(r, θ, θ ′, t ):

[−2Dk2 + Dr (∂θ + ∂θ ′ )]C̃(k, θ, θ ′)

= 2k2Ṽ − iUk · (êθ − êθ ′ )C̃(k, θ, θ ′). (B26)

The passive correlation (U = 0) does not depend on the
angles, the order 0 of the equation above leads to

C̃(0)(k) = −Ṽ (k)

D
. (B27)

This is the usual random phase approximation solution for
direct correlations. At order 1, the equation to solve and its
solution are

[−2Dk2 + Dr
(
∂2
θ + ∂2

θ ′
)]

C̃(1)(k, θ, θ ′)

= −ik · (êθ − êθ ′ )C̃(0)(k), (B28)

C̃(1)(k, θ, θ ′) = ik · (êθ − êθ ′ )D̃(1)(k), (B29)

D̃(1)(k) = C̃(0)(k)

2Dk2 + Dr
. (B30)
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Next, we solve the second order,

[−2Dk2 + Dr
(
∂2
θ + ∂2

θ ′
)]

C̃(2)(k, θ, θ ′)

= 2k2(1 − êθ · êθ ′ )D̃(1)(k), (B31)

C̃(2)(k, θ, θ ′) = −D̃(1)(k)

D
+ k2D̃(1)(k)

Dk2 + Dr
(êθ · êθ ′ ). (B32)

At the end of the day, the expansions at order U 2 of
C̃(k, θ, θ ′) and B̃(k) are

C̃(k, θ, θ ′) = Ṽ (k)

D

{(
−1 + U 2

D2

1

2k2 + 
−2
U

)
− U

D

ik · (êθ − êθ ′ )

2k2 + 
−2
U

+ U 2

D2
(êθ · êθ ′ )

(
1

2k2 + 
−2
U

− 1

k2 + 
−2
U

)}
, (B33)

B̃(k) = Ṽ (k)

D

{(
−1 + U 2

D2

1

2k2 + 
−2
U

)
− U

2πD

ikx

2k2 + 
−2
U

}
, (B34)

with the typical length scale 
U = √
Dr/D.

Our goal is now to look at large distances, that is to say, small wave number k. We assume that Ṽ (k) is regular at 0 (short-range
potential) and we make the substitution Ṽ (k) �→ Ṽ (0). We define the function G̃(k) and its inverse Fourier transform G(r) as

G̃(k) = 1

2k2 + 
−2
U

⇔ G(r) = 1

4π
K0

( ‖r‖√
2
U

)
, (B35)

with K0 the modified Bessel function of the second kind of order 0. In real space, the expansion of B(r) becomes

B(r) ∼
r→∞ −Ṽ (0)

D
+ U 2 Ṽ (0)

D3
G(r) − U

Ṽ (0)

2πD2

∂G(r)

∂x
, (B36)

B(r, θ ) ∼
r→∞ −Ṽ (0)

D
+ U 2 Ṽ (0)

4πD3
K0

(
r√
2
U

)
+ U

Ṽ (0)
√

Dr

2π
√

2D3/2
K1

(
r√
2
U

)
cos θ, (B37)

where K1 is the modified Bessel function of the second kind
of order 1. We detail the meaning of the terms. The first one
in the passive correlation. The second term, scaling as U 2 is a
positive contribution to the isotropic part of the correlations.
As stated in the article, this has been argued, in the literature,
to account for the motility-induced phase separation. The last
term is the dipolar correlation, at order U , on which we fo-
cused in the article. Eq. (B37) corresponds to the prediction
in Figs. 3(b) and 3(c). At large distance, the Bessel functions
decay exponentially,

K0(r) ∼
r→∞ K1(r) ∼

r→∞

√
π

2r
e−r . (B38)

Both the dipolar contribution (cos θ ) and the additional
isotropic part thus decay exponentially over the length scale

U .

3. No rotational diffusion

We now focus on the limit of no rotational diffusion Dr =
0. We easily obtain the Fourier transform C(r, θ, θ ′) from
Eq. (B23),[

2D∇2 + U (êθ − êθ ′ ) · ∇]
C(r, θ, θ ′) = −2∇2V (r), (B39)

C̃(k, θ, θ ′) = −2k2Ṽ (k)

2Dk2 − iUk · (êθ − êθ ′ )
. (B40)

This solution is very similar to the one for a binary mixture
of particles forced, respectively, by U êθ and U êθ ′ [26]. We
integrate over θ ′ to obtain B, this gives

B̃(k) = −k2Ṽ (k)

πD

∫ 2π

0

dθ ′

2k2 − i
−1
r k · (êx − êθ ′ )

= −2k2Ṽ (k)

D
√(

2k2 − i
−1
r kx

)2 + 
−2
r k2

, (B41)

with the characteristic length scale 
r = D/U . kx = k · êx,
ky = k · êy, where êx and êy are the unit vector along the
horizontal and vertical axes of the plane.

We consider the limit of large distance, that is to say k →
0. We assume that Ṽ (k) is regular so that we can replace it by
Ṽ (0). Furthermore, an analysis of leading terms gives k2

y ∼ k3
x .

We keep up these leading terms:

B̃(k) ∼
k→0

−2Ṽ (0)k2
x

D
√


−2
r k2

y − 4i
−1
r k3

x

. (B42)

We can inverse Fourier transform with respect to ky:

B(kx, y) = −2Ṽ (0)
r

πD
k2

x K0
(|y|√−4i
rk3

x

)
. (B43)

We then Fourier transform with respect to kx: B(x, y) =
(2π )−1

∫
dkxeikxxB(kx, y). We perform the changes of vari-

ables q = −(
ry2)1/3kx, w = xu1/3(
ry2)−1/3 and obtain

B(x, y) ∼ Ṽ (0)

D

1

y2
F

(
x



1/3
r |y|2/3

)
, (B44)

F (w) = 1

π2

∫ ∞

−∞
e−iqwq2K0(2

√
iq3)dq. (B45)

This is the scaling form mentioned in the article and used in
Fig. 3(e).
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FIG. 7. Numerical resolution of Eq. (B48) with Ṽ (0) = U = Dr = 1, for k = 104. (a) Real part of C. (b) Imaginary part of C. The solution
concentrates around (γ , γ ′) = (0, 0) and (π, π ). The numerical resolution consists in discretizing γ and γ ′ and then solving the linear system
corresponding to Eq. (B48).

4. No translational diffusion

We set D = 0. Looking at distances large compared to the
particle diameter, we replace Ṽ (k) by Ṽ (0). The equation we
consider is

[(
∂2
θ + ∂2

θ ′
) + i
pk · (

êθ − êθ ′
)]

C̃(k, θ, θ ′) = 2k2Ṽ (0)

Dr
,

(B46)
with the persistence length 
p = U/Dr .

At small 
pk (large distance compared to 
p), the following
development can be obtained:

C̃(k, θ, θ ′) = −Ṽ (0)

Dr

{
1 + i
pk · (êθ − êθ ′ )

+ 
2
pk2êθ · êθ ′ + O((
pk)3)

}
. (B47)

This is a hint that C̃(k, θ, θ ′) is analytical around k = 0,
meaning that C(r, θ, θ ′) decays fastly (e.g., exponentially) at
distances large compared to 
p.

We now consider distances below 
p but still large com-
pared to the particle diameter. We define the angles γ and
γ ′ in the reference frame of k: k · êθ = k cos γ and k · êθ ′ =
k cos γ ′, where k is the norm of k. We obtain

[(
∂2
γ + ∂2

γ ′
) + i
pk(cos γ − cos γ ′)

]
C̃(k, γ , γ ′) = 2k2Ṽ (0)

Dr
,

(B48)
and we study it in the regime 
pk � 1. A numerical resolution
at constant k (see Fig. 7) shows that C̃(k, γ , γ ′) concentrates
around the two points (γ , γ ′) = (0, 0) and (π, π ). We focus
on (0, 0) around which the equation reads

[(
∂2
γ + ∂2

γ ′
) − i

2

pk(γ 2 − γ ′2)

]
C̃(k, γ , γ ′) = 2Ṽ (0)

Dr
k2.

(B49)
We realize that we can inject the following scalings:

C̃(k, γ , γ ′) ∼

pk�1

2Ṽ (0)

Dr
(
pk)3/2H̃[γ (
pk)1/4, γ ′(
pk)1/4].

(B50)
From Eq. (B49), the function H̃ (u, v), for u and v unbounded,
is independent of k and is the solution of the linear partial

differential equation[
∂2

u + ∂2
v − i

2
(u2 − v2)

]
H̃ (u, v) = 1. (B51)

Around (γ , γ ′) = (π, π ), the scalings are

C̃(k, γ , γ ′) ∼

pk�1

2Ṽ (0)

Dr
(
pk)3/2H̃∗((γ − π )(
pk)1/4,

(γ ′ − π )(
pk)1/4), (B52)

with H∗ the complex conjugate of H .
The scaling for B̃ around γ = 0 is

B̃(k, γ ) = 1

2π

∫ 2π

0
dγ ′C̃(k, γ , γ ′)

∼

pk�1

Ṽ (0)

πDr
(
pk)5/4H̃B(γ (
pk)1/4), (B53)

HB(u) =
∫ ∞

−∞
dv H (u, v). (B54)

And around γ = π , one checks that

B̃(k, π − γ ) ∼

pk�1

Ṽ (0)

πDr
(
pk)5/4H̃∗

B ((π − γ )(
pk)1/4),

(B55)

with H∗
B the complex conjugate of HB. We now switch from

polar coordinates (k, γ ) to cartesian coordinates (kx, ky). We
approximate

kx = k cos γ �
{+k if γ � 0
−k if γ � π

,

ky = k sin γ �
{

kγ if γ � 0
k(π − γ ) if γ � π

. (B56)

As we consider small angles (|γ | 
 1 or |π − γ | 
 1), the
values of kx and ky are such that ky 
 kx.

Using the two expressions Eqs. (B53) and (B55), we obtain
a scaling form for the Fourier transform B̃,

B̃(kx ≷ 0, ky) = Ṽ (0)

πDr
(
p|kx|)5/4H̃±

B

(

1/4

p ky

|kx|3/4

)
, (B57)
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with H̃+
B = H̃B used when kx > 0 and H̃−

B = H̃∗
B used when

kx < 0. Finally, we perform the Fourier inversion

B(x, y) = 1

2π

∫
dkxeikxx 1

2π

∫
dkyeikyyB̃(kx, ky), (B58)

first with respect to ky, then with respect to kx. Using the
appropriate changes of variables, we obtain a scaling form for
B(x, y),

B(x, y) = Ṽ (0)

πDr


4
p

y4
G

(

1/3

p x

|y|4/3

)
, (B59)

G(w) = 1

2π

∫ ∞

0
dzeiwzz2H+

B (z3/4)

+ 1

2π

∫ 0

−∞
dzeiwzz2H−

B (|z|3/4), (B60)

where H±
B is the inverse Fourier transform of H̃±

B , one has
H−

B (a) = (H+
B )∗(−a). This form corresponds to Eq. (10) of

the article. The rescaled cuts are plotted on Fig. 3(g) with
the prediction (gray line) computed from a rescaling of the
numerical solution of Eq. (7).

APPENDIX C: NUMERICAL INTEGRATION
OF THE THEORETICAL EQUATION

1. Equation in terms of three parameters

We consider the time-dependent equation [Eq. (B22)] for
the correlations C at low density,

∂tC(r, θ, θ ′) = [
2D∇2 + Dr

(
∂2
θ + ∂2

θ ′
) + U (êθ − êθ ′ ) · ∇]

C(r, θ, θ ′) + 2∇2V (r). (C1)

In polar coordinates, we write r = reφ . The later equation depends on four coordinates (plus time): (r, φ, θ, θ ′). By performing
a rotation of angle θ , the symmetries allow us to reduce the problem to three parameters (r, α, β ),

α = φ − θ, β = θ ′ − θ. (C2)

We write x = reα = (x, y), C is then a function only of x and β. Its time evolution is given by

∂tC(x, β ) =
[

2D∇2 + DrLangles + U

(
(1 − cos β )

∂

∂x
− sin β

∂

∂y

)]
C(x, β ) + 2∇2V (x), (C3)

∇2 = ∂2

∂x2
+ ∂2

∂y2
, (C4)

Langles =
(

y2 ∂2

∂x2
+ x2 ∂2

∂y2
− 2xy

∂2

∂x∂y
− x

∂

∂x
− y

∂

∂y

)
+ 2

(
−y

∂

∂x
+ x

∂

∂y

)
∂

∂β
+ 2

∂2

∂β2
. (C5)

It is important to note that B is given by the integration
over β,

B(x) =
∫ 2π

0
dβ C(x, β ). (C6)

2. Numerical integration

We consider the domain (x, y, β ) ∈ [−xmax, xmax] ×
[0, ymax] × [−π, π ]. We discretize it with steps �x in x,
�y = �x in y and �β in β.

We start from C(x, y, β, t = 0) = 0 and integrate Eq. (C3)
in time using an explicit Euler scheme with time step �t . The
differential operators are evaluated using finite differences
valid at order (�x)2 and (�β )2,

∂

∂x
C(x, y, β ) = C(x + �x) − C(x − �x)

2�x
,

∂2

∂x2
C(x, y, β ) = C(x + �x) + C(x − �x) − 2C(x)

(�x)2
, (C7)

and so on.
The potential is

V (x) =
{

1
2 (1 − ‖x‖)2 if ‖x‖ � 1,

0 otherwise,
(C8)

and its Laplacian is evaluated on the grid.

The boundary conditions are as follows:
(1) Periodic boundary conditions for β;
(2) C(−xmax, y, β ) = C(+xmax, y, β ) = C(x, ymax, β ) =

0;
(3) We use the symmetry relation C(x,−y,−β ) =

C(x, y, β ) to impose the additional points C(x,−�y, β ) =
C(x,�y,−β ).

The numerical integration in time converges to the station-
ary solution at sufficiently large time. When the increment
on C over a time step �t is small enough, we output the
stationary solution Ceq(x, β ) and its integral over β, Beq(x).
This method is used on Figs. 2(a)– 2(d).

APPENDIX D: EXPERIMENTS

1. Experimental system

The experimental system is the one used in Ref. [37]. We
used a suspension of Janus particles of diameter a = 3.17 ±
0.32 μm sandwiched between two ITO electrodes separated
by a spacer of size H = 50 μm. The particles are suspended
in a sodium chloride solution of concentration 10−4 mol/L.
The use of sodium chloride diminishes the temporal variation
of the system, which enables long observation required for
calculating pair correlations. Furthermore, because the addi-
tion of sodium chloride decreases the width of the screening
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FIG. 8. Determination of the experimental parameters. 670 particles are tracked for 35 frames on average (minimum: 20 frames).
(a) Histogram of the average velocities of the particles, the vertical black line is the mean. (b) Mean-square displacement. The estimated
error bars are smaller than the symbol size. (c) Mean-square angular displacement. Error bars represent standard errors estimated from the
distribution of �θ2 for each given �t , the solid line is a linear fit over 0 � �t � 1.5 s.

double layer (Debye length) and consequently the strength
of the induced hydrodynamic flow [41], both the electro-
static and hydrodynamic interactions between the particles
are diminished. This keeps the interactions indiscernible at
the frequency range we used here [37]. For the correlations
presented in the main text, we applied an electric field of
frequency f = 5 kHz and amplitude 2 × 105 Vpp/m (voltage
10 Vpp) in the vertical direction. In this range of frequency,
the Janus particles move in the direction of the uncoated
hemisphere due to the induced-charge electrophoresis [36]
and exhibit neither of electrostatic attractive interactions nor
strong hydrodynamic interactions [37]. Moreover, no polar
order is observed even at high density [36]; these experimental
optimization justifies the theoretical modeling by active Brow-
nian particles as a first approximation.

Videos of the system were captured by a CMOS camera
(Baumer, LXG-80, 3000 × 2400 pixels, 8 bit grayscale) at the
framerate 10 fps mounted on an inverted microscope (Olym-
pus, IX70) equipped with a 40× objective lens (LUCPLFLN,
NA=0.60). A green filter is inserted between the sample and
the halogen lamp to increase the contrast of the hemispheres
of the Janus particles. The acquisition length is 14 min (8400
frames).

We append an experimental movie at 10 Vpp, captured at
10 fps. The field of view of this movie is cropped to 585 px ×
409 px (70 μm × 49 μm) for visibility. The movie is played
at the real speed.

2. Image analysis

Particles were detected using the Hough circle transform
algorithm implemented in the OpenCV library [42]. The po-
sitions of the particles are the centers of the circles. For each
detected circle, we compute the center of mass of the pixels
within it (the weights are the pixels’ values) [12]. The orien-
tation of the particle is defined as the direction of the vector
between the center of mass and the center of the circle. We
will later give an estimate of the precision of this measure.

3. Experimental parameters

We now estimate the parameters of our experimental sys-
tems.

a. Particle diameter. We captured the images with the res-
olution 0.12 μm/px. In the obtained images of the particle

with the diameter a = 3.17 μm, the particle diameter appears
a � 26 px.

b. Density. There are on average 487 particles in a 3000 ×
2400 pixels (∼360 μm × 290 μm) image. This gives the
number density ρ � 487

360 μm×290 μm � 0.0047 μm−2 and the

area fraction φ = ρπ (a/2)2 � 0.04.
c. Velocity. We use Trackpy [43] to obtain the trajectories.

The instantaneous velocities can be obtained by applying a
Savitzky-Golay filter [44]. From the instantaneous velocities,
we find an average velocity U = 56 ± 7 px/s [standard de-
viation given for different particles, see Fig. 8 (a)]. Thus,
U � 6.7 μm/s, that is to say of the order of two particle
diameters per second.

Alternatively, one can compute the mean square displace-
ment as a function of time [Fig. 8(b)]. At the lowest order
in time, 〈�x2〉 = (U�t )2. We find U � 55 px/s � 6.6 μm/s.
This is consistent with the previous result.

d. Rotational diffusion. To measure the rotational diffusion
coefficient Dr , we compute the mean square angular displace-
ment (MSAD) as a function of time. At short time, we expect

〈�θ2〉 = 2θ2
err + 2Dr�t, (D1)

where θerr is the error made in the detection of the orientation
of a given particle on a given frame. At times larger than the
mean free time τfree � ( 1√

ρ
− a)/U � 1.7 s, hydrodynamic

or electrostatic interactions may affect the orientation of the
particles during collisions, resulting in a larger angular dis-
placement. The MSAD is plotted on Fig. 8(c); fitting the
MSAD with Eq. (D1) for 0 � �t � 1.5 s leads to Dr =
0.123 ± 0.004 s−1 and θerr = 8.7 ± 0.3◦.

e. Translational diffusion. This is the hardest quantity to
evaluate. We give an estimate based on the Stokes-Einstein
relation,

D = kBT

6πη(a/2)β
, (D2)

where η = 1.0 × 10−3 Pas−1 is the viscosity of water, T �
300 K is the temperature, and β is a correction factor due to
the proximity of the bottom electrode. Assuming that Faxen’s
law (Eq. (7-4.28) of Ref [45]) is valid for h (distance to the
wall) of the order of a, we obtain β � 3 (one checks that the
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FIG. 9. Experimental pair correlations for different values of the voltage: 6 Vpp, 8 Vpp, and 10 Vpp (left to right). The amplitudes of the
electric field are 1.2 × 105, 1.6 × 105, and 2 × 105 Vpp/m.

thermal fluctuations are negligible). At the end of the day,

D � 300 × 1.38 × 10−23

6π × 1.0 × 10−3 × 1.585 × 10−6 × 3

� 0.05 μm2s−1 � (0.07a)2/s. (D3)

4. Correlations

Once we have detected the positions and the orientations,
we consider a given frame. For each particle far from the
edges of the image, we consider every other particle and
compute its position in the reference frame of the orientation
of the first particle. We put the result in bins of size �x =
�y = 0.1a. After processing all the frames and normalizing
the bins, we obtain the correlation [Fig. 4(b) of the main text].

5. Variation of electric field

We varied the strength of the electric field in the experi-
ments setting the voltage to 6 Vpp and 8 Vpp in addition to the
10 Vpp data that we report in the article. The velocity U of
the particles is known to scale as the square of the strength
of the electric field [36], thus the Péclet number ranges from
Pe = 32 (6 Vpp) to Pe = 90 (10 Vpp). The experimental cor-
relations B(r) are show on Fig. 9. In all three cases the
qualitative behavior is the same: The depletion is maximal in
two wings behind the particle. Experiments with 10 Vpp have
been performed first, and when the system ages particles start
to stick to the substrate, explaining the appearance of positive
concentric circles in the correlations for 6 and 8 Vpp.
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