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Mode-coupling theory exponent γ

Our bacterial glass transitions show a rapid increase
of relaxation times, τQ and τθ for translational and ori-
entational degrees of freedom, respectively, as the area
fraction ϕ is increased (Fig. 2c symbols). The observed
dependence on ϕ is consistent with the power-law diver-
gence that mode-coupling theories (MCT) predict [1–3]
(Fig. 2c dashed lines),

τQ ∼ (ϕQ
c − ϕ)−γQ , τθ ∼ (ϕθ

c − ϕ)−γθ , (S1)

as well as with the Vogel-Fulcher-Tamman (VFT) law
[1, 2, 4] (Fig. S6).

Here we focus on the exponent γ of the MCT power
laws, Eq. (S1). Our fitting gives γQ = 1.6(3) and
γθ = 1.5(13) (see main text). In contrast, for ther-
mal systems, it is actually known that MCT generally
gives γ ≥ γ0 ≡ 1.76 . . . [1]. More precisely, for spher-
ical particle systems near equilibrium, one may indeed
prove γ ≥ γ0 [1]. The situation is more involved for
the aspherical case, where the same inequality has not
been proven from first principles, but by using a diag-
onalization approximation of the MCT memory kernel,
one can still show γ ≥ γ0 [5]. This inequality has also
been confirmed by simulations of different aspherical par-
ticle systems (e.g., [6, 7]), without any exception so far,
to our knowledge. Therefore, it is reasonable to consider
that γ ≥ γ0 generally holds for systems near equilibrium.
Our estimate γQ = 1.6(3) seems to violate this bound,
thereby indicating the non-equilibrium nature of our bac-
terial system. This observation raises some interesting
questions that may deserve further investigation, such as
clarifying conditions to violate the inequality γ ≥ γ0, how
generally this violation takes place in non-equilibrium or
active systems, etc.

∗ kat@kaztake.org
[1] W. Götze, Complex Dynamics of Glass-Forming Liquids:

A Mode-Coupling Theory , International series of mono-
graphs on physics (Oxford Univ. Press, New York, 2009).

[2] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
[3] D. R. Reichman and P. Charbonneau, J. Stat. Mech. 2005,

P05013 (2005).

[4] G. L. Hunter and E. R. Weeks, Rep. Prog. Phys. 75,
066501 (2012).

[5] R. Schilling and T. Scheidsteger, Phys. Rev. E 56, 2932
(1997).

[6] A. J. Moreno, S.-H. Chong, W. Kob, and F. Sciortino, J.
Chem. Phys. 123, 204505 (2005).

[7] P. Pfleiderer, K. Milinkovic, and T. Schilling, Europhys.
Lett. 84, 16003 (2008).



2

SUPPLEMENTARY FIGURES

FIG. S1. Histogram of cell areas. The cell areas were evalu-
ated for ϕ = 0.784(7), from the first three frames where the
cell segmentation was carried out. The dashed line shows
the fitted log-normal distribution, whose probability density

is given by 1√
2πσx

exp
[
− (log x−µ)2

2σ2

]
with µ = 1.37(2) and

σ = 0.281(15) (the value of x is in the unit of µm2). Here the
uncertainty corresponds to the 95% confidence interval from
the fit. The mean cell area is 4.08 µm and the polydispersity
index is 1.07. Note that a few filamentous cells and cells at
the boundary of the region of interest were excluded from this
histogram.
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FIG. S2. Growth of the area fraction ϕ. The area frac-
tion ϕ was evaluated for each group of 500 images recorded
over ≈ 13 s. The time point at the center is used in this
plot. The dashed line shows a fit to the exponential growth
curve, ϕ(t) ∝ 2t/T , which estimated the doubling time at
T = 45(5) min. Here the uncertainty corresponds to the 95%
confidence interval from the fit. Note that the origin of time
is set to be the moment at which we started the acquisition of
the first set of images, which was already roughly five hours
after the start of the experiment.
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FIG. S3. Spatial dependence of the area fraction ϕ. The area fraction ϕ was evaluated for each group of 500 images recorded
over ≈ 13 s, locally in a mesh composed of regions of 10× 10 pixels (1.724 µm× 1.724 µm). Above each panel, the time at the
center of each time interval and the mean value of ϕ (averaged over the time interval and the region of interest) are displayed.
Note that the origin of time is set to be the moment at which we started the acquisition of the first set of images, which was
already roughly five hours after the start of the experiment. These indicate that uniform growth was indeed realized in our
device.
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FIG. S4. Results of fitting of the overlap function Q(∆t) by a stretched exponential function. Each data was fitted by a

stretched exponential function plus an offset, Q(∆t) = fQe
−(∆t/τQ)

βQ
+ aQ. See Fig. S5 for the obtained values of βQ.
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FIG. S5. Stretched exponential parameter β. The estimates
of βQ and βθ from the stretched exponential fitting, Q(∆t) =

fQe
−(∆t/τQ)

βQ
+aQ and Cθ(∆t) = fθe

−(∆t/τθ)
βθ

+aθ (Fig. S4
and Fig. S7, respectively) are shown. The exponent values
are closer to 1 for lower area fractions ϕ, indicating that the
relaxation becomes closer to that of simple liquids.

FIG. S6. Vogel-Fulcher-Tamman (VFT) fitting of the relax-
ation times. The data of τQ and τθ displayed in Fig. 2c are fit-

ted here with the VFT law, τ ∼ exp
(

cϕ
ϕVFT−ϕ

)
(dashed lines).

The transition points are evaluated at ϕQ
VFT = 0.908(12) for

the translational relaxation and ϕθ
VFT = 0.870(35) for the ori-

entational relaxation. The two-step transition scenario is also
confirmed by the VFT fitting.
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FIG. S7. Results of fitting of the orientational correlation function Cθ(∆t) by a stretched exponential function. Each data was

fitted by a stretched exponential function plus an offset, Cθ(∆t) = fθe
−(∆t/τθ)

βθ
+ aθ. See Fig. S5 for the obtained values of

βθ.
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FIG. S8. A cage escape event in the orientation glass phase, ϕ = 0.873(4), different from the one shown in Fig. 3a-c. See also
Movie 7. In this event, the cell did not move across a border of microdomains, unlike the event shown in Fig. 3a-c and Movie 6.
A) Trajectory of the single cell for 0 ≤ t ≤ 7.16 s, drawn on the phase-contrast image taken at the last time frame. Note that
the origin of time is different from that used in Fig. 3a-c. The positions at t = 0, 1.76, 3.53, 5.29, 7.06 s are shown by colored
disks with labels 1, 2, · · · , 5, respectively. B,C) Time series of the displacement from the initial position, |∆r⃗i(t)| (B), and that
of the orientation θi(t) (C) of the cell tracked in panel A. These time series show a cage escape event during 4.5 s ≲ t ≲ 4.7 s.
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FIG. S9. Microdomain size distributions for different thresholds of |∇θ(r⃗, t)|2 (legend, in the unit of (rad/µm)2) and for different
area fractions ϕ. The dashed lines indicate the results of the fitting using all the displayed curves for each ϕ. The resulting
values of the characteristic area A0 are A0 = 7.5 ± 1.8 µm2 (A), A0 = 7.6 ± 2.6 µm2 (B), A0 = 7.5 ± 2.5 µm2 (C), and
A0 = 8.6± 4.8 µm2 (D).
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MOVIE CAPTIONS

Movie 1: Uninterrupted Movie of bacteria undergoing
glass transitions. The Movie starts from the active
fluid phase where bacteria were actively swarming,
and lasts until they become completely jammed.
The Movie shows a central region of size 259× 214
pixels (44.7 µm× 36.9 µm) and played at 20 times
the real speed. Scale bar: 10 µm. Note that this
Movie was taken from an experiment independent
from the other observations, using a different sub-
strate (well diameter 76.3(4) µm, depth ≈ 1.4 µm).

Movie 2: Movie of bacteria at ϕ = 0.784(7) (active fluid
phase). Scale bar 5 µm. Played at real speed.

Movie 3: Movie of bacteria at ϕ = 0.841(5) (active fluid
phase, close to ϕθ

c). Scale bar 5 µm. Played at real
speed.

Movie 4: Movie of bacteria at ϕ = 0.873(4) (orientation
glass). Scale bar 5 µm. Played at real speed.

Movie 5: Movie of bacteria at ϕ = 0.887(4) (complete
glass). Scale bar 5 µm. Played at real speed.

Movie 6: The cage escape event in the orientation glass
phase, ϕ = 0.873(4), shown in Fig. 3a-c. The left
panel shows the trajectory of the single cell drawn
on the phase-contrast image. The right panels show
the time series of the displacement from the initial
position, |∆r⃗i(t)| (top) and that of the orientation
θi(t) (bottom) of the cell shown in the left panel.
The cage escape event took place during 5 s ≲ t ≲
7 s.

Movie 7: Another cage escape event in the orientation
glass phase, ϕ = 0.873(4), shown in Fig. S8. The

left panel shows the trajectory of the single cell
drawn on the phase-contrast image. The right pan-
els show the time series of the displacement from
the initial position, |∆r⃗i(t)| (top) and that of the
orientation θi(t) (bottom) of the cell shown in the
left panel. The cage escape event took place during
4.5 s ≲ t ≲ 4.7 s.

Movie 8: Structure and evolution of microdomains at
ϕ = 0.784(7) (active fluid phase). The left and
right panels show the orientation field θ(r⃗, t) and its
gradient squared |∇θ(r⃗, t)|2, respectively, overlaid
on the phase-contrast image. Played at real speed.
See also Fig. 4.

Movie 9: Structure and evolution of microdomains at
ϕ = 0.841(5) (active fluid phase, close to ϕθ

c).
The left and right panels show the orientation field
θ(r⃗, t) and its gradient squared |∇θ(r⃗, t)|2, respec-
tively, overlaid on the phase-contrast image. Played
at real speed. See also Fig. 4.

Movie 10: Structure and evolution of microdomains at
ϕ = 0.873(4) (orientation glass). The left and right
panels show the orientation field θ(r⃗, t) and its gra-
dient squared |∇θ(r⃗, t)|2, respectively, overlaid on
the phase-contrast image. Played at real speed. See
also Fig. 4.

Movie 11: Structure and evolution of microdomains at
ϕ = 0.887(4) (complete glass). The left and right
panels show the orientation field θ(r⃗, t) and its gra-
dient squared |∇θ(r⃗, t)|2, respectively, overlaid on
the phase-contrast image. Played at real speed. See
also Fig. 4.


