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We report a novel route to active turbulence, observed in numerical simulations of a polar active
fluid model under confinement. To deal with large-scale computations with arbitrary geometries, we
developed a GPU-based scheme that can be used for any boundary shape in a unified manner. For
the circular confinement, as the radius was increased, we found a series of transitions first from a
single stationary vortex to an oscillating pair of vortices, then through reentrant transitions between
oscillatory and chaotic dynamics before finally reaching the active turbulence. The first transition
turned out to be hysteretic, with the emergence of the oscillatory state consistent with the subcritical
Hopf bifurcation. In dumbbell-shaped boundaries composed of two overlapping circles, we observed
a transition comparable to the ferromagnetic-antiferromagnetic vortex-order transition reported in
previous experiments, but the transition point turned out to show a qualitatively different geometry
dependence.

I. INTRODUCTION

Routes to chaos and turbulence have been one of
the central topics in fluid mechanics at high Reynolds
numbers [1, 2] and statistical physics. However, turbu-
lent phenomena are widely observed beyond the high-
Reynolds-number realm, with a notable example of active
turbulence [3] in low-Reynolds-number active matter sys-
tems, for which the route to turbulence remains largely
unexplored. Active matter refers to a collection of self-
propelled particles and it often exhibits collective motion
due to alignment interaction. While ordered collective
motion often arises in theoretical models [4] and also oc-
casionally in experiments [5–7], it is not rare that desta-
bilizing interactions also act and render the collective mo-
tion turbulent. Such active turbulence has indeed been
observed in various experimental systems, such as re-
constituted cytoskeletal systems [8], electrokinetic Janus
particles [9], sperms [10] and bronchial epithelial cell cul-
tures [11]. As demonstrated thereby, active turbulence is
characterized by collective motion with many swirls and
vortices despite the low Reynolds numbers, which has
been diagnosed, among other approaches, through scal-
ing behavior of the power spectrum [3]. Hydrodynamic
descriptions were also proposed, which successfully repro-
duced dynamics and statistical properties of bulk active
turbulence [3, 12–14].

Besides these developments on bulk systems, the pres-
ence of boundaries and confinement have provided inter-
esting new perspectives. While theoretical approaches
are often difficult because of the a priori unknown bound-
ary condition for hydrodynamic descriptions and heavy
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computational costs of agent-based simulations includ-
ing hydrodynamic effects, experiments have shown that
active turbulence often self-organizes into ordered states
under confinements. For example, an ordered vortex has
been observed in circular geometries and a directed flow
in channels, in diverse systems such as bacterial suspen-
sions [15, 16], epithelial cells [17], and reconstituted cy-
toskeletons [18, 19]. Pillars were reported to rectify bac-
terial active turbulence by pinning topological defects in
the flow field [20–22]. More elaborated geometries, such
as connected circular chambers, were also studied and
reported to show transitions between antiferromagnetic
and ferromagnetic vortex order [23–25].

It is then natural to ask how ordered active flows un-
der confinements are destabilized as the confinement is
weakened and end up in the bulk active turbulence, i.e.,
the route to active turbulence. In the literature, routes to
active turbulence have been studied more often without
boundaries, typically by changing the activity, and differ-
ent pathways were proposed for different symmetries [3]:
While active nematic fluids tend to undergo transitions
akin to excitable systems [26], some compressible po-
lar active fluids show oscillatory phenomena due to self-
advection of the polar order [27, 28]. In contrast, studies
of confined systems were limited so far to a few cases. For
channels, the transition to active nematic turbulence was
numerically studied and reported to be in the directed
percolation universality class [29], somewhat similarly to
shear-driven transitions to turbulence in Navier-Stokes
fluids [30, 31]. For circular confinements, experiments of
reconstituted nematic cytoskeletons showed that topolog-
ical defects play crucial roles in dynamics and transitions
of vortices under strong confinements [19]. To our knowl-
edge, such routes to turbulence have not been studied so
far for polar active systems.

In this paper, we determine the route to turbulence
in polar active fluid under varying confinements, using a
prototypical model of polar active turbulence known as
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the Toner-Tu-Swift-Hohenberg (TTSH) equation [3, 12–
14] and the boundary conditions identified by previous
experiments on bacterial turbulence [21]. By increasing
the radius of the circular confinement, we found a se-
ries of transitions starting from a single stationary vor-
tex, passing through intermediate oscillatory states and
finally reaching the active turbulence. The first tran-
sition is from a single stationary vortex to a periodi-
cally oscillating pair of vortices and turned out to be
hysteretic. This is followed by a sequence of transi-
tions across periodic and chaotic oscillations, as well as
a quasiperiodic one, which consists of two fundamental
frequencies with an irrational ratio, before reaching the
final turbulent state. This anomalous route to turbu-
lence is a novel scenario different from those known for
the conventional Navier-Stokes turbulence [1, 2] and for
active nematics in a channel [29]. This finding was made
possible by a GPU-based solver that we developed here,
which efficiently integrates the TTSH equation for arbi-
trary boundary shapes. GPU implementation allowed us
to achieve high-resolution computation within reasonable
time, which was essential to correctly identify intermedi-
ate oscillatory states and transitions. It also helped us to
characterize detailed properties of the transitions, in par-
ticular the Lyapunov exponents, which require massive
extra computations. As our scheme works with arbitrary
boundary configurations in a unified manner, we expect
it to be a useful platform to predict behavior of active
turbulence under confinement, which can also be used for
designing experimental setups for bacterial turbulence.

This paper is organized as follows. In Sec. II, we de-
scribe our calculation scheme, regarding how to fully au-
tomate calculations under arbitrary-shaped geometries,
possible artifacts caused by ordinary schemes, and ad-
vantages of GPU implementation. Then, the results are
presented in two sections. Section III is for circular
confinements, where we unveil the hysteretic stationary-
oscillatory transition as well as subsequent transitions
between oscillatory and chaotic states. Section IV re-
ports simulation results for dumbbell-shaped boundaries,
which consist of two overlapping circles, chosen here as a
test case of the TTSH equation with complex boundary
shapes. In this geometry, we found a transition compara-
ble to the ferromagnetic-antiferromagnetic vortex-order
transition reported by previous experiments [24, 25], but
the transition point turned out to show a qualitatively
different geometry dependence. Section V is devoted to
discussions. Finally, we summarize the results and give
concluding remarks in Sec. VI.

II. METHOD

A. model

We use the TTSH equation, which describes bulk
behavior of turbulent collective motion spontaneously
formed in dense bacterial suspensions [3, 12–14, 21]. In

its dimensionless form [21], it reads:

∇ · v = 0, (1)

∂v

∂t
+ λv · ∇v = av − bv2v −

(
1 +∇2

)2
v −∇p, (2)

where v(x, t) is a coarse-grained velocity field of bac-
teria, p is an effective pressure that ensures the incom-
pressibility, and λ, a, b are model parameters that do
not depend on x, t, v or p. Here, following Ref. [21],
we express the dimensionless coordinates x and time t in
the unit of the characteristic length and time scales, re-
spectively, determined by the Swift-Hohenberg-like term(
1 +∇2

)2
v, which has coefficients otherwise. As a result,

the characteristic wavenumber |k∗| excited by the Swift-
Hohenberg-like term is equal to unity, so that the typical
size of vortices is 2π in real space. This corresponds to
≈ 105 µm for bacterial turbulence of Bacillus subtilis [21].
In the present work, we focus on two-dimensional sys-
tems, to make our results comparable with experimental
observations.

The boundary conditions for the TTSH equation were
determined experimentally in Ref. [21], to be v ≡
(vx, vy) = 0 and the vorticity ω ≡ ∂xvy − ∂yvx = 0,
at least for the experimental condition employed therein.
Then, the existence of boundaries (as well as obstacles)
can be incorporated by adding damping terms into the
TTSH equation in the form of the vorticity equation [21]:

∇ · v = 0, (3)

∂ω

∂t
+ λv · ∇ω = aω − b∇×

[
v2v

]
−
(
1 +∇2

)2
ω − γv∇× [K(x)v]− γωK(x)ω,

(4)

where K(x) is a nonnegative scalar field such that
K(x) ≈ 0 inside the system and K(x) ≈ 1 outside, and
γv, γω are positive parameters representing the damping
strengths. The first damping term in Eq. (4) amounts
to adding the damping −γvK(x)v to Eq. (2) to prevent
v from growing in the area outside the system (K ≈ 1,
referred to as masked area) without affecting the area
inside the system (K ≈ 0, unmasked area). The sec-
ond damping term −γωK(x)ω does the same for the
vorticity. In the following, we set (a, b, λ, γv, γω) =
(0.5, 1.6, 9, 40, 4), which had been reported to quanti-
tatively reproduce the experimental results in Ref. [21]
(see Table I in Appendix B for the list of the parameter
values used in this paper).

B. computation

Although we use the standard pseudospectral method
to integrate the TTSH equation, the calculation is not
an easy task because large-scale computations are re-
quired by nature. There are two specific reasons for the
difficulty. First, as previously stated, we use the vir-
tual boundaries represented by the damping terms. This
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FIG. 1: Emoji boundary. (a) The mask K(x) generated by our automatic mask generator. (b) A snapshot of the
vorticity field from a simulation using the generated mask. Note that the color scale displayed here is used in all
vorticity snapshots in the present paper. See also Movie S1 [32]. (c) Emoji mask before and after the low-pass
filtering in the automatic mask generator, sliced at x = 0.

method is sometimes problematic because v and ω pene-
trate into the damped area outside the system. To avoid
artifacts, damping walls need to be sufficiently thick so
that the penetrating fields decay to almost zero. Second,
the spatial discretization interval ∆x needs to be small
because the results may be influenced by small changes
in the mask field K(x) as addressed in the next section.
Fortunately, this model is not so sensitive to the temporal
discretization interval ∆t if implemented properly. This
allowed us to use the Euler method and obtain converging
results efficiently. Detailed descriptions of the algorithm
are provided in Appendix C. Care was taken to make
full use of the performance of GPU (see Appendix E).
Taking these properties into account, we discretized the
model on an 8192× 8192 square lattice with ∆x = 0.005
and simulated its time evolution with ∆t = 0.01, unless
otherwise stated. Note that most of the calculation was
done for the masked region (typically 90 % in area), to
construct a thick barricade to ensure the decay of the
penetrating fields.

C. mask generation

Although the physical meaning of the mask field K(x)
is straightforward, due care should be taken to design
a suitable K(x) for computation, due to constraints
originating from the pseudospectral method (see Ap-
pendix D). One such constraint is the 1

2 rule for an-
tialiasing in the case of the cubic nonlinearity (see Ap-
pendix C). In short, K(x) should not contain high-
wavenumber modes in order to properly integrate the
nonlinear terms of the TTSH equation, and therefore
a naive step-function-like binary mask cannot be used.
An intuitive treatment is to interpolate the gap between
K = 0 (unmasked) and K = 1 (masked) by a slowly-
varying function such as tanh, but this is not an ideal
solution because tanh contains high-wavenumber modes
even though their amplitudes are significantly smaller

than the original binary mask. Moreover, this approach
requires us to design and encode the mask explicitly as a
part of the program before the calculation. This task is
not straightforward when the geometry is complex, and
there is no general way of predicting whether aliasing
noise associated with the mask is actually tolerable or
not. Therefore, even though the TTSH equation has been
actually calculated by using such a mask without break-
ing down, possibly thanks to the Swift-Hohenberg-like

term
(
1 +∇2

)2
v which damps high-wavenumber modes,

it is desirable to design and use a mask that is free of any
aliasing noise.

To overcome these difficulties, we adopted a completely
different approach, which automatically generates a mask
K(x) that strictly satisfies all the requirements by using
a low-pass filter (see Appendix D for details). As a result,
the only required input is a binary scalar field indicating
where to mask. Figure 1 displays a toy example using
a binarized unicode emoji [33] as the boundary (see also
Movie S1 [32]). As a result of the low-pass filtering, the
generated mask K(x) oscillates as displayed in Fig. 1(c).
Although this side effect is more or less inevitable, the
oscillation can be suppressed by introducing additional
low-pass filtering operations, at the price of sharpness.
We, however, did not take this option intentionally be-
cause we prioritized the sharpness and we did not see any
discernible artifact.

III. CONFINEMENT IN CIRCLE

A. motivations and background

Circle is one of the simplest geometries parametrized
only by its radius R, and its simplicity has long been
arousing experimental interests as surveyed in the intro-
duction section. In particular, it was reported that bacte-
rial flow can be stabilized into a single vortex if confined
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in a sufficiently small circular geometry[15, 24, 25], while
the opposite, unconfined limit corresponds to turbulence.
This led us to perform numerical simulations in circular
areas for various radii R and investigated the route to ac-
tive turbulence in this case. Unless otherwise stated, we
started from a random initial state and discarded tran-
sients to ensure that the system is in a steady state. Note
that high-resolution calculation realized by GPU is cru-
cial here (see Appendix E), because it turned out that
small changes in R may affect qualitative features of the
flow.

B. overview of results

First we outline the results obtained in this geome-
try. Our calculations revealed a rich phase diagram with
different numbers of vortices [Fig. 2(a)] and different dy-
namical states [Fig. 2(b) and Movies S2-S8 [32]] depend-
ing on the radius R. While no vortex is observed for
R . 5.1 due to strong damping, around R = 5.2 we ob-
serve a single stationary vortex generated at the center
of the circle (blue box in Fig. 2 and Movie S3 [32]). As
R is increased, the number of vortices increases to two
(orange box), four (green), and more (purple). Dynamics
becomes non-stationary as soon as multiple vortices are
generated. In particular, the first non-stationary state
observed around R = 5.4 consists of an oscillating pair
of vortices, as shown in Fig. 3 and Movie S4 [32]. The
transition between the single-vortex stationary state and
the vortex-pair oscillatory state will be characterized in
detail, in Sec. III D.

To characterize the changes in the dynamics more
quantitatively, we measure the temporal power spectral
density (PSD) of the vorticity field (Fig. 4), defined by

S(Ω) ≡ 1

N2

∑
x

∣∣∣∣∣∑
t

ω(x, t)e−iΩt

∣∣∣∣∣
2

. (5)

At R = 5.4 (Movie S4 [32]), we confirm the periodic os-
cillation by the PSD that consists of a single fundamental
frequency and its harmonics. At R = 5.6 (Movie S5 [32]),
the first chaotic region suddenly appears while the oscil-
latory dynamics is still observed. At R = 5.8 (Movie S6
[32]), the system regains regularity but another funda-
mental frequency emerges and the oscillation becomes
quasiperiodic (with the fundamental frequencies being
0.01125 and 0.0175). Simultaneously, the system now
accommodates four vortices (see Fig. 2, Movie S2 [32]).
From R = 6.0 to R = 7.4, the system goes back and forth
between the chaotic and oscillatory states (see Movie S7
[32] for R = 7.2) until it finally falls into the chaotic state
at R = 7.6 (Movie S8 [32]) and never returns. From
R = 7.6, the system has more than four vortices and the
number increases with R.

In the following, we will characterize the single-vortex
stationary state (Sec. III C) and the transition to the
vortex-pair oscillatory state (Sec. III D). Then we will

comment on the route to turbulence observed in this ge-
ometry (Sec. III E).

C. single-vortex stationary state

In this state observed around R = 5.2 (blue box in
Fig. 2), a single vortex is generated and located at the
center of the circle. The sign of the vorticity is deter-
mined by the initial condition that we generated at ran-
dom. This is reminiscent of the single-vortex stationary
state reported in experiments [15, 24, 25, 34], even though
the boundary condition may differ and no edge currents
are observed in our simulations.

It is useful to compare the velocity and vorticity fields
in our single-vortex stationary state with those of an an-
alytical solution to the linearized version of the TTSH
equation [21]. As described in Appendix A, the gen-
eral stationary solution to the TTSH equation without
nonlinear terms, expressed in terms of polar coordinates
(r, θ), is given by

ω(x) =

∞∑
n=0

∑
±
C±n ω

±
n (r, θ), (6)

ω±n (r, θ) ≡ Jn(k±r) cos Θn, (7)

and

v(x) =

∞∑
n=0

∑
±
C±n v

±
n (r, θ), (8)

v±n,x(r, θ) =
J ′n(k±r)

k±
cos Θn sin θ − nJn(k±r)

k2
±r

sin Θn cos θ,

(9)

v±n,y(r, θ) =
J ′n(k±r)

k±
cos Θn cos θ +

nJn(k±r)

k2
±r

sin Θn sin θ,

(10)

with v±n,x and v±n,y being the x and y components, re-

spectively, of v±n , Jn the Bessel function of the first kind,

k± ≡
√

1±√a, and Θn ≡ nθ + const. Since the nu-
merically observed single-vortex state is isotropic (i.e.,
independent of θ), we are led to compare with the an-
alytic solutions with n = 0. The result is displayed in
Fig. 5(a). Interestingly, we found that both the tangen-
tial component of the velocity field vθ(r, θ) and the vor-
ticity field ω(r, θ) have qualitative features in common
with a linear combination of those analytic solutions, es-
pecially near the center, despite the existence of the non-
linear terms in our simulations. This may partly be be-
cause the advection term λv ·∇ω of Eq. (4) vanishes for
the isotropic solution. However, since the analytic solu-
tions cannot satisfy the boundary conditions for v and ω
simultaneously, they cannot describe the numerical ob-
servation precisely. We may argue that the existence of
the cubic term −bv2v of the TTSH equation may serve,
effectively, for the Bessel-type solution to adjust itself to
reconcile with the required boundary conditions.
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(a)

(b)

FIG. 2: Phase diagram for the circular confinement, showing snapshots of the vorticity field for different R (same
color scale as Fig. 1(b)). The frames of the snapshots are given different colors corresponding to the number of
vortices (blue: one, orange: two, green: four, purple: more). (a) Typical snapshot chosen for each R. (b) Time series
of the vorticity field. See also Movie S2 [32].
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FIG. 3: Time series of the vorticity field in the
oscillating vortex pair state at R = 5.4. Same color
scale as Fig. 1(b). See also Movie S4 [32].

D. transition to vortex-pair oscillatory state

As R is increased from the single-vortex stationary
state, the system undergoes a transition to the vortex-
pair oscillatory state (orange box in Fig. 2). This state
consists of two oscillating vortices with vorticities of dif-
ferent signs, as already shown in Figs. 2(b) and 3, as well
as in Movies S2 and S4 [32].

The transition between the single-vortex stationary
state and the vortex-pair oscillatory state turned out to
be hysteretic, as illustrated in Fig. 6(a). A useful quan-
tity to capture this transition is the vortex order param-
eter [15]

Ψ =
1

1− 2
π

(∑
x |eθ(x) · v(x)|∑

x |v(x)| − 2

π

)
, (11)

where eθ(x) is the azimuthal unit vector and the sum
is taken over the entire space. By construction, Ψ =
1 if the velocity field is completely azimuthal, whereas
Ψ = 0 if it is completely disordered. To investigate the
hysteresis, we ran simulations sequentially, as follows. To
go up, starting from the steady state at R = 5.20, we
increased R by ∆R = 0.02 and measured Ψ typically over
5-10 periods after the system reached the steady state.
We repeated this step until R = 5.34. To go down, we
did the same in the opposite direction. The result is
shown in Fig. 6(b), which clearly shows the hysteresis.
From this, we approximately estimated the lower and
upper transition points at Rdown

c ' 5.23 and Rup
c ' 5.31,

respectively.
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FIG. 4: Temporal PSD of the vorticity field [Eq. (5)]
measured for different R. Each PSD is multiplied by a
constant to avoid overlapping.
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FIG. 5: Comparison between the single-vortex
stationary state and analytic solutions for the linearized
TTSH equation. (a) Radial dependence of vθ (blue) and
ω (orange) for the single-vortex stationary state at
R = 5.2 (solid) and those for the best-fit linear
combination of the analytical solutions with n = 0
(dashed). The fitting was carried out based on both v
and ω normalized by their mean absolute values. The
same set of C±0 is used for vθ and ω. (b) Two
independent modes of the analytical solutions, v±0,θ and

ω±0 for k = k±.

To quantitatively characterize the dynamic aspect of
this transition, we measured the Lyapunov exponents,
i.e., the exponential growth rates of infinitesimal pertur-
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FIG. 6: Hysteretic transition between the single-vortex stationary state and the vortex-pair oscillatory state. (a)
Snapshots of the vorticity field (same color scale as Fig. 1(b)) as R is increased (top) or decreased (bottom). (b)
Vortex order parameter Ψ. The time-averaged values are shown. The shades indicate the temporal standard
deviations. (c)(d) Lyapunov exponents for increasing R. The two and four largest exponents are shown in (c) and
(d), respectively. The first two exponents increase linearly with R and cross zero at R = Rup

c , consistently with the
case of the subcritical Hopf bifurcation. (e) Four largest Lyapunov exponents for decreasing R. (f) Oscillation
period T above the lower transition point Rdown

c . Its standard deviation is indicated by error bars, visible only for
R = 5.225 (open symbol) where the oscillation was fluctuating. Blue solid lines indicate results of fitting by

T ∝
∣∣R−Rfit

c

∣∣−p, for several choices of data points to use (hence many blue lines are drawn). Inset: The same data
in the log-log scale. Two dashed lines are guides for the eyes corresponding to power laws with exponent 1/2 (green)
and 1/3 (orange).

bations to the solution, which can be a direct clue to
determine the type of bifurcation underlying this tran-
sition [35]. To calculate them, following the standard
method [36, 37], we simulated the time evolution of in-
dependent perturbations δωi(x, t) (i: index) along with
ω(x, t) and measured the exponential growth rates us-
ing the QR decomposition. The Lyapunov exponents λi
were then obtained in ascending order. This procedure
is even more costly than the main calculation and took
days even though we had access to cutting-edge GPUs.

The result is shown in Fig. 6(c) for increasing R, with
∆R = 0.01. This shows that the two largest exponents
λ1, λ2, which are negative for R < Rup

c as expected, in-
crease linearly with R and reach zero at R = Rup

c . This
behavior is consistent with the subcritical Hopf bifurca-
tion, which indeed shows a hysteretic transition to an
oscillatory state [35]. It is also notable that the oscilla-
tory state involves two vanishing exponents, despite the
absence of quasiperiodic behavior. We consider that the
rotational symmetry of the system introduces the second
vanishing exponent, in addition to the one corresponding
to the time translation symmetry. Regarding the third

and fourth exponents λ3, λ4, they also increase linearly
with R up to Rup

c [Fig. 6(d)]. Interestingly, extrapolation
of this linear dependence suggests that it would cross zero
at R ' 5.65, which is close to the transition point to the
state with four oscillating vortices.

For decreasing R, the result is shown in Fig. 6(e).
Given that the transition at Rup

c was consistent with
the subcritical Hopf bifurcation, the standard scenario
from the low-dimensional dynamical systems theory sug-
gests that the lower transition may be described by the
saddle-node bifurcation, in which case the first negative

exponent increases as ∝
∣∣R−Rdown

c

∣∣1/2 when approach-

ing Rdown
c from above [35]. However, it was not our case:

The first negative exponent λ3 does not approach zero
but remains at ' −0.2 as displayed in Fig. 6(e). We
also measured the oscillation period T as a function of R
[Fig. 6(f)], using the half smaller discretization interval
∆x to reduce discretization effect (with the edge length
N∆x kept unchanged; see Table I in Appendix B). If the
transition were the saddle-node bifurcation, we would ex-

pect T ∝
∣∣R−Rdown

c

∣∣−1/2
. However, while our data in-

deed show seemingly power-law divergence near Rdown
c ,
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FIG. 7: Time series of the vorticity field for R ≥ 8 (same color scale as Fig. 1(b)). Note that the results presented
here are affected by relatively strong effects of the periodic boundary, because R is close to L/2 and the vorticity
field does not decay sufficiently at the periodic boundary.

i.e., T ∝
∣∣R−Rfit

c

∣∣−p, we estimated the exponent p at
p = 0.35(1). This was obtained by varying the range
of fitting, on which the result hardly depends, except
that we obtained p = 0.39(1) if the point closest to
transition, at which the oscillation seemed less stable,
was excluded. This suggests that the bifurcation we ob-
served may not be understood within the framework of
the low-dimensional dynamical systems theory. In other
words, this hints at a hitherto unknown bifurcation in
high-dimensional dynamical systems.

E. route to turbulence

Finally we comment on the route to turbulence ob-
served in this circular confinement. As already described
in Sec. III B and Fig. 2, the first nontrivial state ob-
served in this geometry is the single-vortex stationary
state (R = 5.2). AsR is increased, the system first under-
goes a hysteretic transition to the vortex-pair oscillatory
state (5.23 . R . 5.31). This state is periodic for R close
to the transition, while chaotic modulation may be added
for larger R. From R = 5.8, the system has four vortices
and shows multiple transitions among different dynami-
cal states (periodic, quasiperiodic, and chaotic states) in
a reentrant manner. The number of vortices increases
further from R = 7.6 and the system now stays in the
chaotic state (Fig. 7). This state continuously shifts to
active turbulence in the bulk limit (R→∞).

When compared to the route to turbulence for the
Navier-Stokes turbulence, while the emergence of peri-
odic and quasiperiodic states is also seen in the Ruelle-
Takens-Newhouse scenario [2, 38], the rest of the obser-
vations do not correspond to any well-known scenario.
Instead, we note that similar reentrant transitions among
periodic, quasiperiodic, and chaotic states were observed
in the Kuramoto-Sivashinsky equation [39], as well as in a
numerical simulation of the Navier-Stokes equation when
a so-called high-symmetry condition was imposed on the
flow field [40]. Although we did not impose such a con-
dition, our highly symmetric circular geometry may be
relevant to the reentrant behavior that characterizes the
observed route to turbulence.

IV. CONFINEMENT IN DUMBBELL

A. motivations and background

Here we turn our eyes to a dumbbell-shaped confine-
ment as shown in Fig. 8(a), which consists of two over-
lapping circles of radius R with the centers separated
by distance D. This test case serves as a benchmark to
demonstrate the ability of our method to implement a
complex geometry without handcrafting the mask K(x).

In the case of bacterial turbulence enclosed in a PDMS
device [24, 25], it was reported that a pair of vortices
was formed in dumbbell-shaped boundaries, each vortic-
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FIG. 8: Confinement in dumbbell. (a) Outline of the
dumbbell-shaped boundary made of two overlapping
circles and the associated parameters. (b) Order
parameter Ψ2 vs the center-to-center distance D for
different radii R. By construction, Ψ2 = 1 for the
ferromagnetic flow and Ψ2 = 0 for the antiferromagnetic
one. (c) Typical vorticity snapshots taken after
relaxation to the stationary state, for different radii R
and center-to-center distances D (same color scale as
Fig. 1(b)). The background color indicates the value of
Ψ2 according to the color bar. For simplicity, some
snapshots are displayed after mirror reflection so that
the vorticity is always positive in the left half and that
the stronger vortex has the positive vorticity (the latter
can be realized by applying y 7→ −y).

ity peak located near the center of the circle. With a
threshold distance Dc(R) =

√
2R, the signs of the two

vorticity peaks were identical (ferromagnetic vortex or-
der) for D < Dc and opposite (antiferromagnetic vortex
order) for D > Dc [24]. It is therefore of interest to see
if a similar transition takes place in our hydrodynamic
setup.

Our simulations on the dumbbell confinement were
performed as follows. Similarly to the bacterial exper-
iments [24, 25], we set the cavity radius near the char-
acteristic size of a single vortex, R ≈ π. Note that, al-
though even a single vortex could not appear at such
small radii R in the case of the circular confinement (see
Sec. III B), in the dumbbell confinement we do observe
vortices, presumably because of the relatively larger total
area of the confinement. In the simulations reported be-
low, we started from a random initial state and discarded
transients to ensure that the system is in a steady state,
for each choice of R and D.

B. results

Figure 8(c) displays our simulation results. At each
fixed R, for small D we observed a single vortex formed
near the center of the dumbbell, and for large D a pair
of vortices is formed near the centers of the two cavities.
In either case, the vortices are stationary in the steady
state. The latter, vortex-pair state corresponds to the
antiferromagnetic state observed in previous experiments
[24, 25]. Regarding the former, single-vortex state, it is
analogous to the ferromagnetic state in the sense that
the vorticity has the same sign in the entire region of the
dumbbell, but we did not observe a split of vortices as
in the experiments. This difference may be attributed
to the presence of the edge flow under the conditions of
Beppu et al.’s experiments [24, 25], while our choice of the
boundary conditions is based on another experimental
setup by Nishiguchi and coworkers [20, 21].

A difference is also seen in the transition between the
two states. In our simulations, as shown in Fig. 8(c), the
threshold distance Dc(R) decreases with increasing R,

while it was increasing as Dc(R) =
√

2R in Beppu et al.’s
experiments [24]. To quantify this observation, we mea-
sured an order parameter specialized for this case, defined

by Ψ2 =
∣∣∣ω(x∗left) + ω(x∗right)

∣∣∣ /(|ω|(x∗left) + |ω|(x∗right)
)

with x∗left/right = argmaxleft/right|ω|. Here, the subscript

“left” and “right” stands for the area within D/2 from
the center of either cavity. By construction, Ψ2 = 1 for
the ferromagnetic flow and Ψ2 = 0 for the antiferromag-
netic one. The results in Fig. 8(b) clearly demonstrate
that Ψ2 transitions from ≈ 1 to ≈ 0 as D is increased,
with Dc(R) decreasing with increasing R. Therefore,
our Dc(R) is ruled by a law different from the scal-
ing Dc(R) ∝ R observed in Beppu et al.’s experiments
[24, 25]. Beppu et al. [24] accounted for the relation

Dc(R) =
√

2R on the basis of edge currents, i.e., tan-
gential flow on the boundary, which is incompatible with
the boundary conditions chosen here (see discussions in
Sec. V A). It is therefore reasonable to consider that the
absence of edge current in our setup may be responsible
for this difference.

V. DISCUSSIONS

A. edge current

Here we discuss the edge current, i.e., tangential flow
along the boundary, typically seen in experiments under
circular confinements [15, 24, 25, 34]. The edge current
involves non-vanishing tangential velocity at the bound-
ary, vθ 6= 0 in the case of the circular confinement. In
the aforementioned experiments, bacteria actually swim
along the boundary. The formation of counter-rotating
double layers has also been reported in droplet suspen-
sions of B. subtilis [15], while no such counter-rotating
layers were reported in the case of E. coli confined in a
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microfluidic device [24, 25]. In contrast, in our simula-
tions, vθ continuously decays to zero due to the damping
terms, without edge current nor counter-rotating layer.
This difference clearly results from our choice of the
boundary conditions, v = 0 and ω = 0, which were
deduced from the experimental observation of dense B.
subtilis suspensions placed on a substrate with micro-
fabricated pillars and bordered by a liquid-air interface
[20, 21]. Although counter-rotating layers were not ob-
served in the low-magnification microscopy carried out in
these experiments, the possible existence of such layers
may have led to our boundary conditions, as discussed in
Ref. [21]. Therefore, we expect that our numerical sim-
ulations provide predictions for experimental conditions
similar to those in Refs. [20, 21], rather than those in
the existing experiments of circularly confined bacteria
[15, 24, 25, 34].

To extend the model to deal with the case with edge
currents, we may (1) introduce a slip velocity to allow a
nonvanishing vθ at r = R or (2) use another governing
equation that does not suppress high-wavenumber vari-
ations, thus allowing the existence of current near the
no-slip boundary. We tested the approach (1) by using
a damping scheme that only removes the radial veloc-
ity component vr. However, we were unable to carry
out physically sound simulations in this case, because
the tangential component vθ penetrated deep inside the
damped zone. In passing, we note that this boundary
condition allowed us to set the circle radius R smaller
than the minimum value reported in Sec. III to generate
a vortex. This may be related to the fact that, for the no-
slip condition, the identity

∫
r<R

ωdxdy =
∮
r=R

v ·dx = 0
guarantees that positive and negative vorticities must ex-
ist in the same amount inside the confinement, while for
the slip case ω can escape from the confinement despite
the damping. Regarding the approach (2), we may re-
move the ∇4v term of the TTSH equation. The equa-
tion then reduces to the incompressible version of the
Toner-Tu equation, for which vortices were reported to
appear in bulk systems [41] unlike the original, compress-
ible Toner-Tu equation [42–44]. These approaches may
deepen our understanding of effect of edge current on
structures and dynamics of active fluids in confined ge-
ometries.

B. implementation of the boundary conditions

One may wonder if the boundary conditions, whether
slip or no-slip, can be imposed more directly, without re-
sorting to the damping scheme. In this case, we have to
deal with arbitrary-shaped boundaries directly. In the
literature, such a method has been pursued in broader
contexts. For example, in computational fluid dynam-
ics [45], an arbitrary-shaped boundary is typically re-
alized by a tailored mesh, and the model is discretized
and integrated on it. For the TTSH equation, however,
the discretization of the fourth-order derivative and the

boundary condition of vanishing vorticity is not straight-
forward on such a mesh. More specifically, one may want
to use the second-order derivative of v (to use the compu-
tationally efficient Laplacian) on the boundary, but this
is incompatible with the discrete fourth-order derivative
of the time evolution equation. More sophisticated algo-
rithms may be devised, but we suspect that it is difficult
to avoid uncontrollable approximations and that such al-
gorithms are more costly than the pseudospectral method
we adopted.

VI. CONCLUDING REMARKS

In this work, we realized numerical simulations of the
TTSH equation with arbitrary-shaped boundaries, and
presented results for the two representative test cases,
namely the circular and dumbbell confinements.

From the computational perspective, first we empha-
size that GPU implementation makes calculations fast
and affordable, without the need to use supercomputers
or to wait for weeks. Indeed, this paper contains several
simulations that would take months or even years us-
ing workstation-class CPU (typically 101 ∼ 102 threads,
3 GHz).

Let us conclude this paper by discussing physical impli-
cations of the work. Our numerical investigation with the
TTSH equation has succeeded in reproducing the emer-
gent vortex order reported in the experiments, at least
qualitatively. At the same time it has highlighted that
the slight difference in the confinement geometry can give
rise to quantitatively different vortex structures. Specifi-
cally, we have explored a novel route to chaos and turbu-
lence under the circular confinement in the TTSH equa-
tion. This route starts with a hysteretic transition from
an ordered vortex to an oscillating pair of vortices, con-
sistent with the subcritical Hopf bifurcation. This is fol-
lowed by reentrant transitions across periodic, quasiperi-
odic, and chaotic oscillations, until the system finally
reaches the active turbulent state. Since our boundary
conditions are the ones inferred from the specific exper-
imental realization reported in Ref. [21], it is an impor-
tant future task to investigate how robust our findings
are, for other models and boundary conditions that may
be more suitable for other experimental setups. In this
context, it is interesting to note that a Hopf bifurcation
was also reported for another polar active fluid model
without confinement but variable activity [28], suggest-
ing some extent of universality in the route to polar active
turbulence via oscillatory states. We anticipate that our
results will contribute to the fundamental understand-
ing of how turbulent structure develops in active matter
systems.
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Appendix A: analytic solution for the linearized
TTSH equation

Following Ref. [21], here we describe analytic solu-
tions for the linearized TTSH equation, which amounts
to setting (b, λ) = (0, 0) in Eq. (2). Note that the
dropped nonlinearity cannot be regarded as a pertur-
bation. Therefore, the analytic solutions described in
this section may not necessarily represent the numeri-
cal observations even approximately. Nevertheless, these
analytic solutions help interpret some numerical results
presented in Sec. III.

The linearized TTSH equation for the vorticity, with
the stationarity condition, reads:

0 = aω −
(
1 +∇2

)2
ω. (A1)

This can be easily solved in the polar coordinate system
(r, θ), on the basis of the real-valued eigenfunctions of
the Laplacian, Jn(kr) cos (nθ + const.), where Jn is the
Bessel function of the first kind, k > 0, and n = 0, 1, . . . .
The corresponding eigenvalue is −k2. Therefore, a solu-
tion to Eq. (A1) needs to satisfy 0 = a − (1 − k2)2, i.e.,

k = k± ≡
√

1±√a. The general solution is then given
by linear combinations of them:

ω(x) =

∞∑
n=0

∑
±
C±n ω

±
n (r, θ), (A2)

ω±n (r, θ) ≡ Jn(k±r) cos Θn, (A3)

with Θn ≡ nθ + const.
Moreover, in the case of the two-dimensional incom-

pressible fluid studied in this work, the velocity field v(x)
can be reconstructed from the vorticity field ω(x) by us-
ing the stream function. First we obtain the stream func-
tion ψ(x) by solving ∇2ψ = −ω, then it follows that
vx = ∂yψ and vy = −∂xψ. This gives

v(x) =
∞∑
n=0

∑
±
C±n v

±
n (r, θ), (A4)

v±n,x(r, θ) =
J ′n(k±r)

k±
cos Θn sin θ − nJn(k±r)

k2
±r

sin Θn cos θ,

(A5)

v±n,y(r, θ) =
J ′n(k±r)

k±
cos Θn cos θ +

nJn(k±r)

k2
±r

sin Θn sin θ,

(A6)

using the same C±n as Eq. (A2). Here, v±n,x and v±n,y are

the x and y components, respectively, of v±n .
In relation to our results for the circular domain with

finite radius R (Sec. III), we first note that, if any special
solutions ω±n (r, θ) and v±n (r, θ) satisfy ω±n (R, θ) = 0
and v±n (R, θ) = 0 simultaneously, this can be regarded
as a solution for the circular domain case, aside from
the ignored nonlinearity. However, these two conditions
are actually never satisfied simultaneously, because for

all x > 0 the roots of Jn(x) and J ′n(x) do not coincide.
We may make ω(x) and v(x) closer to zero at r = R by
combining the two modes with k = k±, but the bound-
ary conditions cannot be exactly satisfied. This point is
commented in Sec. III C.

Appendix B: notation

Table I summarizes the parameters and symbols used
in the paper.

TABLE I: Table of parameters and symbols.

symbol description
λ = 9 advection strength
a = 0.5 activity parameter
b = 1.6 nonlinearity parameter
γv = 40 velocity damping strength
γω = 4 vorticity damping strength
N = 8192a number of grid points per dimension
∆x = 0.005a spatial discretization interval
∆t = 0.01 temporal discretization interval
L = N∆x edge length of the calculation area
∗̂, DFT[∗] discrete Fourier transform of ∗
iDFT[∗] inverse discrete Fourier transform of ∗
k ∈

[
− π

∆x
, π

∆x

]2
DFT wavenumber

∆k = 2π
L

discretization interval of k
K(x) preprocessed damping mask
a (N, ∆x) = (16384, 0.0025) were used for the oscillation
period T shown in Fig. 6(f).
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Appendix C: calculation scheme

Algorithm 1 is our integration scheme for the TTSH
equation based on the pseudospectral method and the
Euler method.

Algorithm 1 integration scheme

Input: (v(t), ω̂(t))
1: rhs1 = −bv2v − γvKv
2: rhs2 = −λv · iDFT[ikω̂]− γωKω
3: ˆrhs = ik× ˆrhs1 + ˆrhs2

4: ω̂naive = exp
[{
a−

(
1− k2

)2}
∆t
](
ω̂ + ˆrhs∆t

)
5: for all k do
6: if k = 0 then
7: ω̂new(0) = 0
8: v̂new(0) = exp [(a− 1)∆t] ·

∑
x

1√
N2

(v + rhs1∆t)

9: else if k2 >
(

1
2
· π

∆x

)2
then

10: ω̂new(k) = 0
11: v̂new(k) = 0
12: else
13: ω̂new(k) = 1

2
{ω̂naive(k) + ω̂naive(−k)∗}

14: ψ̂(k) = ω̂new(k)

k2

15: v̂new(k)|x = ikyψ̂(k), v̂new(k)|y = −ikxψ̂(k)
16: end if
17: end for
Output: (vnew, ω̂new) = (v(t+ ∆t), ω̂(t+ ∆t))

The key operations are the discrete Fourier trans-

form (DFT) defined by f̂(k) = 1√
N2

∑
x f(x)e−ik·x

and its inverse (iDFT) similarly defined by f(x) =
1√
N2

∑
k f̂(k)eik·x. Thanks to them, we can replace all

the ∇ by −ik. Note that the periodic boundary condi-
tion is implicitly assumed, i.e., f(x, y) = f(x± L, y) =
f(x, y±L), whose artifacts are negligible as long as the
walls are thick enough so that v(x) and ω(x) are suffi-
ciently small at the periodic boundary.

As the first step, GPU calculates all the nonlinear
terms using element-wise operations and DFT, which are

then stored to ˆrhs. A pitfall here is aliasing, i.e., artifacts
caused by the expansion of the range of k due to mul-
tiplication in real space. To deal with it, we need to
eliminate high-wavenumber modes before and after this
step, though the “before” operation can actually be opti-
mized out. For the TTSH equation containing the cubic
term bv2v, the appropriate cutoff is 1

2 · π
∆x (the 1

2 cutoff
rule).

Next, GPU computes the time evolution of ω̂ by the
Euler method and stores the result to ω̂naive. The re-
placement ∇ → −ik plays a crucial role here, because it
allows us to integrate the linear terms of the time evo-
lution equation separately and exactly by using the ex-
ponential multiplier. Without this technique, calculation
will diverge unless we use ridiculously small ∆t ∼ ∆x4.

As the last step, GPU performs post-calculation oper-
ations. For k = 0, ω̂ is corrected to the exact value 0 and
v̂ is directly calculated from the time evolution equation
of v, because this spatially uniform component cannot

be recovered from ω. Specifically, we used the following
equation, obtained by taking the spatial average of both
sides of the TTSH equation [Eq. (2)]:

∂〈v〉
∂t

= (a− 1)〈v〉 − b〈v2v〉 − γv〈K(x)v〉, (C1)

where the brackets denote spatial averaging. Note that
∇p, ∇2v, and v · ∇v = ∇ · (vv) vanish because of the

periodic boundary condition. For k2 >
(

1
2 · π

∆x

)2
, every-

thing is set to 0 to avoid aliasing. For 0 < k2 ≤
(

1
2 · π

∆x

)2
,

ω̂ is corrected to satisfy ω̂(k) = ω̂(−k)
∗

and v is recov-
ered from the corrected ω̂. The correction is essential for
stable calculation; without that, accumulated numerical
errors violate ω̂naive(k) = ω̂naive(−k)

∗
, which is necessary

for real-valued ω. For v, GPU solves the equation for the
stream function ψ(x), ∇2ψ = −ω, and obtains v from ψ.
This technique is valid for the two-dimensional incom-
pressible flow studied here and∇·v = 0 is automatically
satisfied. Without using this, one may need to solve Pois-
son’s equation for the pressure, which is severely time-

consuming, but here we can bypass it just by dividing ψ̂
by k2.

Appendix D: processing mask K(x)

As described in the previous section, to avoid alias-
ing, it is necessary to apply a low-pass filter after real-
space multiplications. This requirement also applies to
the mask K(x). Thus, we have to design an appropri-
ate mask field K(x) such that it has no high-wavelength
modes, and at the same time it is nonnegative, K ' 0
inside the region of interest and K ' 1 otherwise. This
can be automated as follows:

Algorithm 2 mask processing scheme

Input: Knaive

1: K̂naive = DFT[Knaive]
2: for all k do
3: if k2 >

(
1
4
· π

∆x

)2
then

4: K̂naive(k) = 0
5: else
6: modify K̂naive(k) (optional)
7: end if
8: end for
9: K = iDFT[K̂naive]2

Output: processed K(x)

To begin with, Algorithm 2 computes DFT of Knaive,
followed by a low-pass filtering at a 1

4 cutoff. This cutoff

ensures that the output K(x) does not violate the 1
2 cut-

off rule for antialiasing (we remark below why 1
4 ). Then,

optionally, one may include additional low-pass opera-
tions (or any other processing) in the else block, as long

as K̂naive(k) = K̂naive(−k)
∗

is satisfied. In the last step,

K is substituted by squared iDFT of K̂naive. This ensures
K ≥ 0, without changing the essential shape of the mask.
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FIG. 9: Time required for an iteration of the Euler
method versus lattice size N , compared between CPU
(Intel Xeon W-2295) and GPU (NVIDIA A6000). This
shows that GPU is approximately 60 times faster for
large N .

It is because of this square that we chose the 1
4 cutoff for

Knaive, to satisfy the 1
2 rule in the finally obtained K(x).

We used a binary mask for the input. For the circular
case, we set Knaive(x) = 1 for ‖x‖ ≥ R and 0 otherwise.
For the dumbbell case, Knaive was obtained by logical
AND of two circles. We did not use any optional opera-
tions because any additional cutoff makes the difference
between the designed geometry and the obtained K(x)
larger.

Appendix E: why GPU?

The core observation is that any operation in the calcu-
lation scheme explained above reduces to an element-wise
arithmetic operation either in the real or Fourier space.
Element-wise operations can easily be parallelized, and
using cuFFT library the DFT becomes massively faster.
Note that any if statement should be purged from GPU
codes for better performance, and in the present scheme
it was possible to eliminate all the conditional branches
from the performance-critical components.

As a result, although the computational cost of our
large-scale simulations was far more massive compared
to the previous studies, GPU was able to deal with them
fast enough as shown in Fig. 9.

Appendix F: movie captions

In Movies S2-S8, scales of the arrows for the veloc-
ity field and the colors for the vorticity field are kept

unchanged. The color scale is identical to that used in
Fig. 1(b).

Movie S1: Vorticity field from a simulation with the
emoji boundary. See Fig. 1 of the main text.

Movie S2: Vorticity fields for the circular confinement
with radii R = 5.2, 5.4, . . . , 8.0.

Movie S3: Velocity (arrows) and vorticity fields (color)
for R = 5.2 (single-vortex stationary state). This
video includes the transient from a random initial
condition.

Movie S4: Velocity (arrows) and vorticity fields (color)
for R = 5.4 (vortex-pair oscillatory state).

Movie S5: Velocity (arrows) and vorticity fields (color)
for R = 5.6 (chaotic state).

Movie S6: Velocity (arrows) and vorticity fields (color)
for R = 5.8 (quasiperiodic state).

Movie S7: Velocity (arrows) and vorticity fields (color)
for R = 7.2 (periodic state).

Movie S8: Velocity (arrows) and vorticity fields (color)
for R = 7.6 (chaotic state).

Appendix G: code availability

The codes used in this work and associated information
are available upon request.
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