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Topological defects are a universal concept across many disciplines, such as crystallography, liquid-
crystalline physics, low-temperature physics, cosmology, and even biology. In nematic liquid crystals,
topological defects called disclinations have been widely studied. For their three-dimensional (3D)
dynamics, however, only recently have theoretical approaches dealing with fully 3D configurations
been reported. Further, recent experiments have observed 3D disclination line reconnections, a
phenomenon characteristic of defect line dynamics, but detailed discussions were limited to the case
of approximately parallel defects. In this study, we focus on the case of two disclination lines that
approach at finite angles and lie in separate planes, a more fundamentally 3D reconnection config-
uration. Observation and analysis showed the square-root law of the distance between disclinations
and the decrease of the inter-disclination angle over time. We compare the experimental results with
theory and find qualitative agreement on the scaling of distance and angle with time, but quantita-
tive disagreement on distance and angle relative mobilities. To probe this disagreement, we derive
the equations of motion for systems with reduced twist constant and also carry out simulations for
this case. These, together with the experimental results, suggest that deformations of disclinations
may be responsible for the disagreement.

I. INTRODUCTION

Where there is order, its mismatch exists. Topological
defects are prime examples of mismatching order and are
omnipresent across many materials [1, 2], including crys-
tals [1], liquid crystals [1, 3, 4], superfluids [5], spacetime
in cosmology [6], and living things [7, 8]. Despite various
orders depending on systems, corresponding topological
defects are expected to share common behaviors. For
example, line-shaped defects often experience reconnec-
tions [6, 9–17], in which two defect lines approach, collide,
exchange endpoints, and separate.

Liquid crystals, especially nematic liquid crystals, are
a material where topological defects have been heavily
studied because of their optical properties and controlla-
bility. Nematic liquid crystals are typically composed of
building blocks with elongated shape which tend to align
with each other. They are characterized by a unidirec-
tional order represented by a unit vector n̂ with apolar
nature (n̂ ≡ −n̂) called the director. Its singularities
are topological defects called disclinations. Many studies
on nematic disclinations include, for instance, the gen-
eration of defects followed by the ordering process [16],
defects’ interaction with microparticles [18–20] or light
[19, 21], operation of molecules by defects [22, 23], and
control of defects by alignment of the surface of the con-
tainers [20, 24–26]. In recent years, nematic ordering and
patterns have also been found in living systems [7, 8],
and topological defects are suggested to be related to
some biological functions, including cell extrusion [27],
promotion of bacterial colonies’ vertical growth [28, 29],
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and organization center of Hydra morphogenesis [30]. As
for theoretical approaches to disclination dynamics, al-
though the governing equations of liquid crystal are well
known [4], it is not straightforward to obtain equations of
motion of defects, especially for fully three-dimensional
(3D) configurations. Recently, there has been some the-
oretical work to better understand the interaction and
velocity of 3D topological defects [31–33].
Despite the intensive study of nematic disclinations,

previous observations of disclinations are mainly by
transmitted light, and only two-dimensional (2D) infor-
mation can be obtained. In our previous work [17], mak-
ing use of the dye localization at the disclination core [23]
to visualize disclination lines, we successfully observed
its 3D dynamics, in particular reconnections and loop
shrinkage [17]. However, the analysis was limited to the
dynamics of reconnections occurring to essentially paral-
lel disclinations in an approximately single plane.
In this paper, we study the dynamics of intersecting

reconnections, in which two disclinations lying in sepa-
rate planes approach not in parallel but with an angle.
We used confocal microscopy and observed disclinations
relaxing from an electrically driven turbulent state. We
extracted the positions of disclinations from acquired im-
ages, investigated the time evolution of the distance and
the angle between two reconnecting disclinations, and
discussed the result by comparing it with theory and nu-
merics.

II. EXPERIMENTAL METHOD

We used a nematogen MLC-2037 (Merck, a discontin-
ued product) because of small optical anisotropy (∆n =
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FIG. 1. Reconnections of nematic disclinations. (a,b)
Schematics of an intersecting reconnection (a) and an in-plane
reconnection (b). (c) Fluorescence observation of an inter-
secting reconnection. Top views (left column) and side views
(right column) are displayed. The reconnection occurred at
time t = 0. See also Supplemental Videos 1-2 [34]. Another
reconnection event is also shown in Supplemental Videos 3-4
[34].

0.0649) for optical observation and negative dielectric
anisotropy (∆ϵ = −3.1) for generating disclinations, as
described below. We added 0.01wt% of electrolyte, tetra-
n-butylammonium bromide, to increase its conductivity
and 0.005wt% of a fluorescent dye, coumarin 545T, to
label disclinations [17, 23]. The sample was put into
a 130µm-thick cell consisting of a coverslip and a glass
plate with polyimide tape spacers. Both glass substrates
were coated with indium tin oxide and imposed unidi-
rectional planar alignment by polyvinyl alcohol coating
and rubbing with velvet cloth. Similarly to our previous
work [17], by applying an AC voltage of root-mean-square
amplitude 150V and frequency 35Hz, we induced a tur-
bulent state called the dynamic scattering mode 2 [4, 35]
to generate a high density of disclinations. Then, by
switching off the applied voltage, the system exhibited
a relaxation process, in which disclinations interacted,
shrinked, and disappeared.

To obtain 3D dynamics of disclinations, we used a
laser-scanning confocal microscope, Leica SP8 (objec-
tive 40x, NA 1.30, oil immersion) with resonant scanner
working at 8 kHz and a piezo objective scanner. After
starting relaxation, we first searched disclination pairs
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FIG. 2. Schematics of two reconnecting disclinations and their
director structures. (a) Two disclinations with the respec-

tive tangent vectors t̂1, t̂2 and the rotation axes Ω̂1, Ω̂2 are
shown. The two disclinations separate a minimum distance δ
and form an angle ψ = arccos

(
t̂1 · t̂2

)
≤ π/2 with the tangent

vectors at the two closest points. (b) Various director config-
urations of 3D disclination lines, seen at a cross-section per-
pendicular to the line. All these are topologically equivalent,
i.e., homeomorphic. The thick arrows indicate the rotation
axis Ω̂, a unit vector normal to the plane in which the direc-
tor rotates by π along a closed loop around the disclination.

likely to reconnect by moving the field of view, which
was fixed thereafter. Due to the imposed homogeneous
alignment at the cell surfaces, disclinations moved away
from the surfaces and were often found near the midplane
of the cell thickness. In such a circumstance, reconnec-
tion events are conveniently classified to two types: an
in-plane reconnection, in which two reconnecting discli-
nations are almost in a single plane and approach approx-
imately in parallel [Fig. 1(b)], and an intersecting recon-
nection, in which disclinations are not in a single plane
and form a finite angle [Fig. 1(a)]. Here, we observed
twelve intersecting reconnection events.
A series of experimental snapshots is shown in Fig. 1(c)

(see also Supplemental Videos 1-4 [34]). The fluorescent
dye was excited at 488 nm by laser light polarized in the
direction perpendicular to the nematic easy axis. The
directions of the laser polarization and the nematic easy
axis are denoted by the x- and y-axes, respectively. The
fluorescence signal in the range between 500 and 600 nm
was confocally detected by a photomultiplier tube de-
tector (pinhole size 23µm). The voxel size in the xy-
plane was 0.455µm and the spacing between z slices was
1µm. The number of voxels was 512, 96, 30 in the x-,y-,
and z-directions, respectively. The time interval between
consecutive confocal images was 0.330 s. We extracted
the coordinates from the 3D xyz images by applying the
snake method [36] (see AppendixA).

III. EXPERIMENTAL RESULTS

We start with the minimum distance δ(t) between two
reconnecting disclinations at time t [Fig. 2(a)]. The result
in Fig. 3(a) shows the square-root law:

δ(t) ≃ C|t− t0|1/2, (1)
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FIG. 3. Time dependence of the distance δ (a) and the angle
ψ (b) between two reconnecting disclinations. Results for all
12 reconnection events are shown with different colors.

where t0 is the reconnection time. This scaling is the
same as that observed for in-plane reconnections of es-
sentially parallel disclination pairs [17]. Theoretically,
the scaling was derived from the effective force inversely
proportional to the distance δ [31] under the assumption
that the force is balanced to a drag force proportional
to the disclination velocity. It was also predicted by the
disclination density tensor method [33] calculated from
the nematic tensor Q, which contains the director n̂ and
the scalar order parameter, and observed in simulations
[32]. From the viewpoint of universality, we note that
a similar scaling was also observed for quantum vortices
in superfluid helium 4 [9–13] and in the Gross-Pitaevskii
equation [37].

For intersecting reconnections, the angle between the
two disclinations is another quantity characterizing them.
We consider the two closest points of the reconnect-
ing disclinations 1 and 2, with tangent vectors t̂1 and
t̂2 for the respective disclinations [Fig. 2(a)]. We define
the inter-disclination angle ψ by ψ = arccos

(
t̂1 · t̂2

)
, as

shown in the inset of Fig. 2(a). Since the sign of t̂1 and t̂2
is arbitrary, we choose it in such a way that t̂1 ·̂t2 ≥ 0, i.e.,
0 ≤ ψ ≤ π/2. Our analysis shows that the angle ψ is not
constant during each reconnection event but decreases
over time [Fig. 3(b)]; in other words, each disclination
pair tends to be closer to parallel as time goes on. This
behavior is consistent with earlier numerical observations
[32, 33] and theoretical prediction [33].

Let us quantitatively compare the time evolution of
the distance δ and the angle ψ, which we obtained ex-
perimentally, with the theory reported in Ref. [33]. Ac-
cording to the theory, the time evolution of the distance
δ and the angle ψ are described by the following non-
dimensionalized simultaneous differential equations:

dδ

dt
= 4
(
Ω̂1 · Ω̂2

)cosψ
δ

, (2)

dψ

dt
= 4
(
Ω̂1 · Ω̂2

) sinψ
δ2

. (3)

Here, the unit vectors Ω̂1 and Ω̂2 are the rotation axes,
each normal to the plane in which the director rotates by
π along a closed loop around the disclination [Fig. 2(b)].
Dividing Eq. (2) by Eq. (3) and integrating the result, we
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FIG. 4. Comparison with the theory. (a) Log-log plot of
sinψ and δ. (b) Histogram of the coefficient ratio µ2/µ1. The
average value over events is µ2/µ1 = 0.26 ± 0.08 (the error
indicates the standard deviation). (c,d) Evaluation of each of
the two equations, Eq. (8) (c) and Eq. (9) (d). Images from
eight to two time frames before the reconnection were used for
all events. For (a), (c), and (d), results for all 12 reconnection
events are shown with different colors. (e) Histograms of the
respective coefficients µ1 and µ2. The values are obtained
by the fitting of the data in (c) and (d). (f) Scatter plot of
the coefficient ratio obtained from the individual values of µ1

and µ2 in (e) against that directly obtained from the power
law in (a). Error bars indicate the 95% confidence intervals
evaluated from the respective fittings.

obtain

sinψ ∝ δ. (4)

This relation is tested with the experimental data in
Fig. 4(a). The result shows that, while δ and sinψ are
indeed related by a power law, the exponent value was
estimated at 0.26±0.08 by averaging over all events (the
error indicates the standard deviation), clearly smaller
than 1, the prediction of Eq. (4). This indicates a quan-
titative limitation of Eqs. (2) and (3).

To probe the dynamics of the disclinations, suppose
Eqs. (2) and (3) are replaced by the following more gen-
eral form, with two different coefficients −µ1,−µ2 < 0
instead of the common one, 4(Ω̂1 · Ω̂2) in Eqs. (2) and
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(3):

dδ

dt
= −µ1

cosψ

δ
, (5)

dψ

dt
= −µ2

sinψ

δ2
. (6)

We remind that we chose the signs of t̂1 and t̂2 that
satisfy cosψ ≥ 0; as a result, Ω̂1 · Ω̂2 < 0 is expected for
an attracting disclination pair [31, 32]. This is why we set
the negative coefficients −µ1,−µ2 < 0. Then, similarly
to Eqs. (2) and (3), we obtain the following power law
from Eqs. (5) and (6):

sinψ ∝ δµ2/µ1 . (7)

This power law is to compare with the experimental
data in Fig. 4(a). The values of the power-law expo-
nent, µ2/µ1, varied a little among reconnection events
[Fig. 4(b)], with the average being µ2/µ1 = 0.26±0.08 as
already noted.

Equations (5) and (6) were also tested respectively.
Since derivatives of experimental data are noisy, not
Eqs. (5) and (6) themselves but the following integrated
forms are considered:

δ(ti)− δ(t) = µ1

∫ t

ti

dt′
cosψ(t′)

δ(t′)
, (8)

ψ(ti)− ψ(t) = µ2

∫ t

ti

dt′
sinψ(t′)

δ(t′)
2 . (9)

Here, ti is set to be the first frame used in the analysis.
By using images from eight to two time frames before
the reconnection, we indeed confirm that the l.h.s is pro-
portional to the integral in the r.h.s. for both of Eqs. (8)
and (9) [Fig. 4(c,d)]. This indicates that Eqs. (5) and (6)
describe intersecting reconnections. Moreover, from the
proportionality coefficients, the individual values of µ1

and µ2 are obtained [Fig. 4(e)]. For each event, the coef-
ficient ratio is consistent with the value obtained directly
from Eq. (7) [Fig. 4(f)].

To summarize the results so far, Eqs. (5) and (6) suc-
cessfully describe the evolution of the distance and the
angle of intersecting reconnections, and the mobility ratio
µ2/µ1 = 0.26 ± 0.08 was obtained. However, the theory
of Ref. [33] predicts Eqs. (2) and (3) with the common
coefficient, hence µ2/µ1 = 1, disagreeing with the exper-
imental result. What then determines the mobility ratio
µ2/µ1 in the experiment?

IV. THEORY

To investigate the discrepancy in the mobility ratio
µ2/µ1 between the experimental data and the theory of
Ref. [33], we consider here the case of unequal nematic
elastic constants. Nematic distortions may be described

by the elastic energy density

K1

2
(∇ · n̂)2 + K2

2
(n̂ · (∇× n̂))

2
+
K3

2
|n̂× (∇× n̂)|2

(10)
where K1, K2, and K3 are the elastic constants for splay,
twist, and bend, respectively. In the theory derived in
Ref. [33], it was assumed K1, K2, and K3 were equal;
however, in the experimental system this is not the case.
MLC-2037, the mesogen used in this experiment, has a
smaller twist elastic constant, K2 = 6.1 ± 0.5 pN, than
splay, K1 = 11.6 pN, and bend, K3 = 13.2 pN [17].
Therefore, to more closely align the theory with experi-
ments, we derive equations akin to Eqs. (2) and (3) but
for a generalized case of K1 = K3 ̸= K2.
We first remark the director structure around a

straight line disclination in its normal plane for the case
K1 = K3 = K ̸= K2, discussed already in the literature,
e.g., in Ref. [38]. For concreteness, we assume the tangent

vector t̂ = ŷ, the rotation vector Ω̂ = ẑ, and the director
around the disclination is given by n̂ = cos θx̂ + sin θŷ
where θ = θ(x, z) is a yet undetermined function. Substi-
tuting this into Eq. (10) and taking a variational deriva-
tive yields the following equation for θ:

K
∂2θ

∂x2
+K2

∂2θ

∂z2
= 0. (11)

A solution that accommodates a defect is given by

θ(x, z) = m arctan

(
x√
εz

)
, (12)

where m is a half-integer multiple winding number and
ε = K/K2 is the ratio of elastic constants.
To derive the equations for δ and ψ, we use the meth-

ods of Ref. [33] to approximate the structure of the ne-
matic tensor order parameter Q at the location of the
disclination line. This approximation is then used to ap-
proximate the velocity of the disclination line. To do this,
we assume that the dynamics of theQ tensor is solely due
to free energy relaxation:

∂Q

∂t
= − 1

γ

[
δF

δQ

]TS

(13)

where γ is a rotational viscosity, F is the free energy of
the system, and [·]TS denotes the traceless, symmetric
part of a matrix. The relevant elastic free energy density
in terms of Q is

fe = L1|∇Q|2 + L2|∇ ·Q|2 (14)

where L1 and L2 are elastic constants that may be
mapped to Ki:

L2

L1
= 2

(
K1

K2
− 1

)
. (15)

We note that including the L2 term in Eq. (14) does not
break the degeneracy K1 = K3. Since we only consider
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relaxational dynamics, the equations we derive do not
take into account hydrodynamic effects such as backflow.
We assume the system is composed of two, infinitely long
disclinations that remain straight with anti-parallel ro-
tation vectors Ω̂1 · Ω̂2 = −1 aligned along the z-axis
[Fig. 2(a)]. The resulting equations of motion for δ and
ψ are (see AppendixC for details of the calculation):

γ
dδ

dt
= − (4L1 + 2L2) cosψ

εδ
, (16)

γ
dψ

dt
= −4L1 sinψ

δ2
. (17)

The predicted ratio of effective mobilities µ2/µ1 is

µ2

µ1
=

2L1ε

2L1 + L2
= 1, (18)

where Eq. (15) is used in the second equality. We thus
predict the same mobility coefficient ratio as Eqs. (2) and
(3), independent of the ratio of the elastic constants. We
note that this prediction does not take into account defor-
mations of the disclination line, and the resulting director
field. For a deformed line disclination, Eq. (12) no longer
holds, and a more complicated director configuration will
be assumed by the system.

V. INFLUENCING FACTORS OF THE
MOBILITY RATIO µ2/µ1

A. Experiment

Since the reduced twist elastic constant alone turned
out to be unable to explain the small mobility ratio
observed in the experiment, we test if the experimen-
tal values of µ2/µ1 for individual events [Fig. 4(b)] may
be correlated with any property of the disclination pairs
(Fig. 5). Among the inspected properties, the only signif-
icant dependence we found was a slightly negative corre-
lation with the initial angle ψi formed by the two discli-
nation lines [Fig. 5(e)]. This indicates that disclination
pairs with larger angles have smaller values of µ2/µ1.
Since µ1 and µ2 correspond to mobilities for the distance
δ and the angle ψ, respectively, we can say that disclina-
tions with larger angles are harder to rotate to be parallel.
This may suggest the effect of the deformation of discli-
nation lines, induced locally or globally by the rotation
of disclinations, which is not considered in the theoretical
approach.

B. Simulations

We also probe the mobility ratio µ2/µ1 by performing
3D computations of the evolution of the Q-tensor gov-
erned by Eq. (13), for systems with a reduced twist elastic
constant as considered in the previous section. For the
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FIG. 5. Scatter plots of the coefficient ratio µ2/µ1 [as de-
termined directly by Eq. (7)] against several properties of the
disclination pairs. (a) Against the time-averaged angle of the
disclination pair θpair. The angle θpair is obtained by pro-
jecting the vector t̂1 + t̂2 to the xy-plane and measuring the
angle between the projected vector and the easy axis (y), the
direction of the surface alignment of the cell. (b,c) Against
the speed vM (b) and the angle θdrift (c) of the drift. The
drift is a constant flow that the two disclinations are exposed
to, which is supposedly induced extrinsically (e.g., by other
disclinations present outside the field of view). We evalu-
ate the drift velocity by using the midpoint of the two clos-
est points. Then the angle θdrift is obtained by projecting
the drift velocity in the xy-plane and measuring the angle it
makes with the easy axis. The drift is also used to define the
comoving frame to discuss the symmetry of dynamics in Ap-
pendixB. (d) Against the angle θdrift,pair formed by the drift
velocity and the disclination pair. (e) Against the initial an-
gle ψi formed by the two disclinations, which is determined
here eight time frames before the reconnection. (f) Against
the curvature of the disclinations. The values κ1 and κ2 are
for the two respective disclinations. The curvatures at the
closest points right before the reconnection are used.

free energy, we use the Maier-Saupe Ball-Majumdar po-
tential for the bulk free energy density [39], and Eq. (14)
for the elastic free energy density. We use free nematic
boundary conditions on the boundaries of the computa-
tional domain. The computations are carried out using
the Matlab/C++ finite element package FELICITY [40]
while matrix inversions are performed using AGMG [41–
44]. We non-dimensionalize the system by scaling lengths
in terms of the nematic correlation length, and times in
terms of the nematic relaxation time. We fix the compu-
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(a) 5 (b) 50

(c) 88 (d) 97

FIG. 6. Time snapshots of a simulated disclination reconnec-
tion for initial angle cosψ0 = 0.6, system size [Lx, Ly, Lz] =
[20, 20, 10], and time steps t/∆t = 5 (a), 50 (b), 88 (c), 97 (d).
The contours indicate points where the nematic scalar order
parameter S = 0.3SN , where SN is the equilibrium value of
S in the nematic phase.

tational time step to ∆t = 0.2. Further details involving
the computational algorithm can be found in Ref. [45].

For the computations, we fix the ratio L2/L1 = 2,
corresponding to an elastic constant ratio of K2/K1 =
0.5, similar to that of the experiment. To consider a pair
of straight line disclinations that are initially apart by a
distance δ0 in the z direction and form an initial angle
ψ0 in the xy plane around the y axis [see also Fig. 2(a)],
we initialize the system in a 3D domain of dimensions
[Lx, Ly, Lz] with director field

n̂ = cos(θ1 − θ2)ŷ − sin(θ1 − θ2)x̂, (19)

θ1(x, y, z) =
1

2
arctan

(
x cosψ0/2− y sinψ0/2√

ε (δ0/2 + z)

)
,

θ2(x, y, z) =
1

2
arctan

(
−x cosψ0/2− y sinψ0/2√

ε (δ0/2− z)

)
.

We fix the initial distance at δ0 = 4 and vary ψ0 such
that cosψ0 ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. We compute on
two different system sizes [Lx, Ly, Lz] = [10, 10, 10] and
[20, 20, 10] so that, in the latter size, disclinations are ini-
tially twice the length of those in the former. In Fig. 6 we
show several time snapshots of a simulated disclination
reconnection where the contours represent the locations
of the defects.

We measure δ(t) and ψ(t) and plot in Fig. 7(a) the log-
log scaling of sinψ versus δ for δ ≥ 2. There is a power
law relationship between sinψ and δ, just as observed in
the experiments and predicted by the theory. We note
that for δ < 2 the disclination cores begin to overlap and
there is no longer a clear power law relationship, which
is reasonable as we do not expect the theory to hold for
overlapping disclination cores. For each computation, we
extract the effective mobility ratio µ2/µ1 by determining

2 3 4 5
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0.6
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0 0.5 1 1.5
0

0.5

1(a) (b)

0.7

110
20

FIG. 7. Numerical results for reconnecting disclinations. (a)
Log-log plot of sinψ versus δ for various initial angles ψ0

and two system sizes, Lx, Ly = 10 (circles) and Lx, Ly = 20
(squares). Note that the data for Lx, Ly = 20 is vertically
offset to distinguish the data sets. Lengths are given in di-
mensionless simulation units. (b) Mobility ratio µ2/µ1 versus
initial disclination angle ψ0 for systems sizes Lx, Ly = 10 and
20.

the exponent from Fig. 7(a). In Fig. 7(b) we plot µ2/µ1

as a function of initial angle ψ0 for the set of computa-
tions with system size Lx = Ly = 10 and Lx = Ly = 20.
For the smaller system size, µ2/µ1 ∼ 0.9 and increases
slightly as ψ0 increases. The values are close to the the-
oretically predicted mobility ratio of µ2/µ1 = 1, but are
smaller, possibly due to the deformations of disclinations
as they reconnect. For the larger system size, in which
disclination lengths are doubled, we find that µ2/µ1 is
systematically smaller than that of the smaller system
size for each ψ0. Further, µ2/µ1 decreases with increasing
ψ0 for the larger system size, similarly to the experiment
[Fig. 5(e)].

The numerical results indicate that, for the parame-
ters explored here, the effective mobilities of disclination
reconnections are sensitive to large scale deformations of
the disclinations. The theoretically predicted µ2/µ1 = 1
is most closely assumed by the numerical results at small
system sizes, when the disclinations cannot appreciably
deform and remain better approximated by straight lines.
When doubling the length of disclinations, the mobil-
ity ratio decreases with increasing angle, indicating that
disclinations slow their rotation rate due to deformations
along the disclination. These deformations can be seen
in Fig. 6 as the disclinations reconnect.

VI. CONCLUDING REMARKS

We investigated intersecting reconnections of disclina-
tions. Experimentally, the square-root scaling was deter-
mined for the time dependence of the distance δ between
reconnecting disclinations. The angle ψ between discli-
nations, which decreases over time, is also important to
describe the dynamics. It was found that Eqs. (2) and
(3) predicted in Ref. [33] can describe the experimentally
observed time evolution of the distance and the angle, ex-
cept that the mobility coefficients, µ1 and µ2 in Eqs. (5)
and (6), were found to be different, resulting in a value
of the ratio µ2/µ1 significantly smaller than the theo-
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retical prediction µ2/µ1 = 1. We extended the theory
to the case of a reduced twist elastic constant and con-
sidered the change in the equilibrium director field, but
the predicted mobility ratio µ2/µ1 turned out to remain
the same. We therefore searched for influencing factors
of µ2/µ1 in both experiments and simulations, and found
that µ2/µ1 tends to decrease with increasing initial angle
between the disclination pair. Numerically, the mobility
ratio was also found to be smaller for longer disclination
lines. Since disclinations may not rotate while main-
taining their straight shapes as assumed in the theory,
the rotation results in local deformation of the disclina-
tions, and this effect is stronger when two disclinations
are longer or form a larger angle. We therefore consider
that the deformations of the disclinations may be rele-
vant to the reduced value of µ2/µ1.

Our results suggest a few interesting directions for fu-
ture studies. First, it is important to develop a theoret-
ical framework to deal with the dynamics of deformable
disclinations. It may also help to extend the analysis of
experimental and numerical data, to analyze not only the
vicinity of the closest points but longer parts of the discli-
nations. The surface alignment of the cell may also influ-
ence the dynamics of disclinations. Second, even though
the theory predicted that the mobility ratio µ2/µ1 does
not change by a reduced twist elastic constant, numeri-
cal data were more consistent with the theory if the equal
elastic constants were assumed [33]. This suggests that
the reduced twist elastic constant may still have a non-
trivial effect, presumably affecting the way the deforma-
tion is involved. Therefore, it may be interesting to con-
duct experiments using liquid crystals with different ra-
tios of the elastic constants, K2/K1, by using, e.g., large
K2 expected near the nematic-smectic transition [4] or for
nematic discotic liquid crystals [46]. We also note that
deviation of the director field from the equilibrium one
[Eq. (12)] can change the mobility ratio µ2/µ1. For ex-
ample, if we replace Eq. (12) by that for the one-constant
case (ε = 1), we obtain µ2/µ1 = K2/K1 < 1 in the the-
ory. This suggests the potential importance of observ-
ing the director field around disclinations, by methods
such as the fluorescence confocal polarizing microscopy
[47, 48], two- or three-photon excitation fluorescence po-
larizing microscopy [49–51], and the tomographic mea-
surement of the dielectric tensor [52].

As described in the introduction, since topological de-
fects provide useful means to control microparticles and
light in liquid crystal medium, better understanding of
defect dynamics can contribute to developments in this
direction. Moreover, as topological defects also appear
in various scientific fields other than liquid crystals, it is
also important to unravel the general behavior of topo-
logical defects beyond liquid crystals. We hope our work
will contribute to these and trigger further investigations
to elucidate fully 3D dynamics of topological defects.
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Appendix A: Image analysis

The 3D coordinates of disclinations were extracted
from the obtained data of fluorescence intensity at 3D
positions (x, y, z) via a method called snakes [36]. It is
a way to find smooth contours. Since we know disclina-
tions are smooth lines, the method is suitable for extract-
ing disclinations’ positions. In the snake method, the
position of a disclination line is represented by v(s) =
(x(s), y(s), z(s)) with a parameter s, and its shape is de-
termined to minimize the total cost function, or energy,
given by

E∗ =

∫
E(v(s)) ds

=

∫
(wintEint(v(s)) + wimEim(v(s))) ds . (A1)

Here, Eint is the internal energy, Eim is the image energy,
and wint and wim are the weights for the internal energy
and the image energy, respectively. The internal energy
is given by

Eint =
1

2

(
αint

∣∣∣∣∂v(s)∂s

∣∣∣∣2 + βint

∣∣∣∣∂2v(s)∂s2

∣∣∣∣2
)
, (A2)

where αint and βint are coefficients. The first and the sec-
ond terms of Eq. (A2) correspond to the energy cost due
to the length and the roughness of the line, respectively.
For the image energy, we adopted the intensity I(x, y, z)
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FIG. 8. Histogram of the asymmetry parameter A.

itself here, since we assume that the fluorescent intensity
is higher nearer to the disclination core:

Eim = −I(x, y, z). (A3)

Practically, the contour v was expressed as a series of
points, with intervals of approximately 2µm, and the
minimization of Eq. (A1) was implemented by the gra-
dient descent method. Since this implementation can,
in principle, only reach local minima, it is important to
start from an initial condition close to the desired result.
For that purpose, disclination shapes roughly estimated
from the obtained images were used as initial conditions
for the first time frame. From the second time frame, the
result of the previous time frame was used as the initial
condition for the subsequent frame. In order to reduce
noise and improve convergence, the images were filtered
with a 3-by-3-by-3 median filter and a Gaussian filter (a
kernel with a standard deviation of 0.5). Concerning the
time stamp, although the fluorescence intensity at differ-
ent positions was recorded at slightly different times in
the laser scanning confocal microscopy, we used a unique
time value for each 3D image, represented by the time at
the z coordinate of the midpoint of the two closest points.
The reconnection time t0 was determined not from con-
focal images but from the 2D image from the transmitted
excitation laser, to benefit from the finer time resolution.

Appendix B: Symmetry

We discussed the symmetry of defect dynamics in our
previous work [17]. In 2D, a pair of point-like defects
with winding numbers of ±1/2 is well-known to approach
asymmetrically and annihilate, but 3D line-shaped de-
fects were found to approach in a symmetric manner and
reconnect, at least for the in-plane reconnections ana-
lyzed in Ref. [17]. This symmetry restoring is explained
on the basis of the topological equivalence of various
structures of 3D disclinations and the lower energy of
twist defects, which result in symmetric dynamics.

Here we inspect the symmetry of the dynamics for
the case of intersecting reconnections. As discussed in
Ref. [17], the disclination dynamics in the lab frame may
include extrinsic effects due to other disclinations that ex-
ist outside the field of view. Such effects appear as a drift

that is uniform in the field of view and has a constant
velocity for each reconnection event. Therefore, these ex-
trinsic effects were removed by evaluating the dynamics
in the frame comoving with the constant drift. The co-
moving frame was defined for each reconnection event in
a manner similar to that adopted for in-plane reconnec-
tions [17]. The midpoint of the two closest points of the
respective disclination lines was located at each time, and
the time evolution of the midpoint was fitted by a linear
function of time. The slope of this function determines
the constant velocity of the comoving frame.
In the comoving frames, two reconnecting disclinations

turn out to approach each other symmetrically for all in-
tersecting reconnections (Fig. 8). Therefore, the symme-
try restoring mechanism discussed in Ref. [17] also applies
to intersecting reconnections, and disclinations are con-
sidered to take a twist configuration during the events.
Asymmetry parameter A was determined for each recon-
nection event as follows. First, we obtained the distance
D1(t) and D2(t) between respective disclinations and the
reconnection point X0, and fit D2

i (t) by the equation
D2

i (t) ≃ C2
i (t0 − t) with constants Ci. Then, A is de-

fined by

A :=
max{C1, C2}
min{C1, C2}

. (B1)

Here, the estimate of the reconnection point X0 was
refined by using the time-dependent coordinates of the
disclinations before the reconnection. Specifically, X0 =
(X0, Y0, Z0) was determined in such a way that the scal-
ing Di(t) ≃ Ci|t − t0|1/2 is satisfied more precisely in
a time period before the reconnection. This was done
by evaluating Di(t) with the reconnection point var-
ied over six neighboring positions in 3D, fitting it to
Di(t)

2 = ai|t− t0|+ bi, choosing the direction that mini-
mizes b21+ b

2
2, and iterating this to reach the (local) min-

imum. The point was moved at an interval of 1/5 of the
voxel size. The final results were at most 2.5µm away
from the first rough estimate, which was located from
the series of transmitted and confocal images (X0 and
Y0 from the transmitted images, Z0 from the confocal
images).

Appendix C: Derivation of Theoretical Equations of
Motion

Here we give more details leading to the equations of
motion of Eqs. (16) and (17). As mentioned above, we
assume the dynamics are purely relaxational and that
the system comprises two infinitely long disclinations at
distance δ and angle ψ with respect to one another. We
fix a coordinate system so that one disclination is along
the y-axis, while the other disclination lies in the xy-
plane, and that the shortest points between disclinations
are along the z-axis. We also assume the rotation vectors
are Ω̂1 = −Ω̂2 = ẑ, as sketched in Fig. 2(a). Finally, we
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assume the director structure around a single isolated
disclination is given by

n̂ = cos θx̂+ sin θŷ (C1)

where θ is given by Eq. (12).
Following the methods of Ref. [33], we use the kine-

matic equation for the velocity of a disclination line:

v = 2
t̂×

(
Ω̂ · g

)
|D|

∣∣∣∣∣∣
r=R

(C2)

where t̂ is the tangent vector of the disclination, gγk =
εγµν∂tQµα∂kQνα is related to the topological current,
and Dγi = εγµνεikℓ∂kQµα∂ℓQνα and we have assumed
summation on repeated indices and simplified notation
so that ∂k ≡ ∂/∂xk. Note that these quantities need
only be computed at the location of the disclination core,
r = R.

The Q-tensor dynamics are

γ∂tQµα = 2L1∂k∂kQµα+

L2

[
∂α∂kQµk + ∂µ∂kQαk − 2

3
δµα∂ℓ∂kQℓk

]
. (C3)

Upon substituting Eq. (C3) into Eq. (C2), we find that
the last term of Eq. (C3) does not contribute to disclina-
tion motion, while the first two L2 terms give the same
contribution, so it suffices to simplify and consider only
γ∂tQµα = 2L1∂k∂kQµα + 2L2∂α∂kQµk. Given the new
director structure of Eq. (12), the linear core approxima-
tion for Q is

Q ≈ SN

[
1

6
I− 1

2
ẑ⊗ ẑ

+

√
εz

2a
(x̂⊗ x̂− ŷ ⊗ ŷ) +

x

2a
(x̂⊗ ŷ + ŷ ⊗ x̂)

]
(C4)

where SN is the magnitude ofQ in the nematic phase and
a is the disclination core radius. Substituting this into
Eqs. (C3) and (C2) and taking into account the rotation
of the director caused by the other disclination line, the
velocity of the first disclination line along the y-axis is

v1(y) =
(2L1 + L2)δ cosψ

εδ2 + y2 sin2 ψ
ẑ− 2L1yε sinψ

εδ2 + y2 sin2 ψ
x̂ (C5)

A similar equation may be derived for the velocity of the
other disclination, v2. To obtain equations of motion for
δ and ψ, we use the identities

dδ

dt
= ẑ · (v2(0)− v1(0)) , (C6)

− sinψ
dψ

dt
=
dv2

dy

∣∣∣∣
y=0

· t̂1 +
dv1

dy

∣∣∣∣
y=0

· t̂2, (C7)

leading to Eqs. (16) and (17).
Appendix D: Supplemental Video Caption

Video 1-4: Fluorescence observation of intersecting re-
connections. Supplemental Videos 1 and 2 show
the event displayed in Fig. 1(c), from the top and
side, respectively. Supplemental Videos 3 and 4
show another reconnection event, again from the
top and side, respectively.
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ics of disclination lines in three-dimensional nematics,
Proc. R. Soc. A. 479, 20230042 (2023).

[34] See Supplemental Material for Videos 1-4.
[35] S. Kai and W. Zimmermann, Pattern dynamics in the

electrohydrodynamics of nematic liquid crystals, Prog.
Theor. Phys. Suppl. 99, 458 (1989).

[36] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active
contour models, Int. J. Comput. Vis. 1, 321 (1988).

[37] A. Villois, D. Proment, and G. Krstulovic, Universal and
nonuniversal aspects of vortex reconnections in superflu-
ids, Phys. Rev. Fluids 2, 044701 (2017).

[38] J. Geurst, A. Spruijt, and C. Gerritsma, Dynamics of
s = 1/2 disclinations in twisted nematics, J. Phys. (Paris)
36, 653 (1975).

[39] J. M. Ball and A. Majumdar, Nematic liquid crystals:
From Maier-Saupe to a continuum theory, Mol. Cryst.
Liq. Cryst. 525, 1 (2010).

[40] S. W. Walker, Felicity: A Matlab/C++ toolbox for de-
veloping finite element methods and simulation model-
ing, SIAM J. Sci. Comput. 40, C234 (2018).

[41] Y. Notay, An aggregation-based algebraic multigrid
method, Electron. Trans. Numer. Anal. 37, 123 (2010).

[42] A. Napov and Y. Notay, Algebraic analysis of
aggregation-based multigrid, Numer. Linear Algebra
Appl. 18, 539 (2011).

[43] A. Napov and Y. Notay, An algebraic multigrid method
with guaranteed convergence rate, SIAM J. Sci. Comput.
34, A1079 (2012).

[44] Y. Notay, Aggregation-based algebraic multigrid for
convection-diffusion equations, SIAM J. Sci. Comput. 34,
A2288 (2012).

[45] C. D. Schimming, J. Viñals, and S. W. Walker, Nu-
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