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A wide range of disordered materials, from biological to geological assemblies, feature discrete
elements undergoing large shape changes. How significant geometrical variations at the microscopic
scale affect the response of the assembly, in particular rigidity transitions, is an ongoing challenge
in soft matter physics. However, the lack of a model granular-like experimental system featuring
large and versatile particle deformability impedes advances. Here, we explore the oscillatory shear
response of a sponge-like granular assembly composed of highly compressible elastic rings. We
highlight a progressive rigidity transition, switching from a fluid-like to a solid-like response by
increasing density or decreasing shear amplitude. The rearranging fluid state consists of crystal
clusters separated by melted regions; in contrast, the solid state remains amorphous and absorbs all
imposed shear elastically. We rationalise this transition by uncovering an effective, attractive shear
force between rings that emerges from a friction-geometry interplay. If friction is sufficiently high
compared to shear, the extent of the contacts between rings, captured analytically by elementary
geometry, controls the rigidity transition.

Particulate assemblies, such as granular media, can
switch their mechanical behaviour between a solid and
a fluid-like response depending on their density, applied
stress or interactions. This solid-fluid transition is of
tremendous importance across length scales and disci-
plines, with the elemental particles varying in size, shape,
and stiffness. Such jamming or yielding transitions are,
for instance, underlying the onset of geological flows [1],
the transport and clogging in industrial food processing
[2], and are at the heart of numerous biological processes
[3].

For rigid particles without internal degrees of freedom,
the rigidity transition is mainly controlled by the average
number of constraints imposed by the number of neigh-
bours [4], including for non-spherical particles [5]. Even
when particles are softer and can moderately deform their
shape upon contact, such as emulsions or foams, the num-
ber of contacts remains an essential factor [6–8]. How-
ever, particle deformations may reach up to the order of
the particle size for a broader class of materials, from bi-
ological tissues to porous soils. By adapting their shape
to external constraints, such squishy particles [9] acquire
additional degrees of freedom, potentially affecting the
fluid-solid transition ingredients.

Recent works highlight the role of shape and deforma-
bility in the jamming transition of highly deformable par-
ticles, both in thermal [10, 11] and athermal [12–14] as-
semblies. Dedicated tools have also been developed to
quantify the large shape changes that cells undergo while
embedded in a deforming tissue [15]. The shape of the
cells in epithelial tissues is one of the essential param-
eters governing a rigidity transition [16–18]. In geolog-
ical flows, the shape of constitutive particles undergoes
significant changes primarily via breaking [19], which in
turn have a critical effect on the rheology [20] and jam-
ming transition [1, 21]. With very soft grains that do not

break, compaction far above jamming highlights that not
only the coordination number increases with compaction,
but also the size of the contacts [22, 23].

Despite these recent advances, a clear picture of how
extreme deformability affects the fluid-solid transition is
still lacking. It is an ongoing challenge in soft matter
physics and related fields [24]. Although advanced nu-
merical methods, such as the vertex model [18], the ma-
terial point method [25] and phase field approach [26, 27],
have been used, numerical investigations remain incred-
ibly challenging owing to the non-linear couplings be-
tween geometry and interactions at the local scale, and
a large number of elements. As such, a simple exper-
imental model featuring large deformation at the grain
scale would be essential to explore this question. One
may leverage the recent advances in granular metamate-
rials [28] and metafluids [29], whose properties are gov-
erned by geometrical non-linearities at the particle scale,
to control grains compressibility.

Here, we introduce assemblies of compressible elastic
rings as an experimental model to explore the role of
large grain deformations in the rheology of disordered
media. Via oscillatory shear experiments, we highlight
a solid-fluid transition controlled by the shear amplitude
and the density. While the transition is characterised
by the absence or presence of structural rearrangements,
compression-induced large geometrical deformations help
the assembly absorb shear without rearranging in the
solid phase. Finally, we argue that this transition is
mainly driven by the size of the frictional contacts be-
tween the compressed rings via effective adhesive interac-
tions under shear, which stem from the interplay between
geometrical deformations and friction.
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Fluid-solid transition in a sheared assembly of
compressible rings

We consider a two-dimensional assembly of frictional,
elastic, and ring-shaped grains (see Fig. 1a and Supple-
mentary Video 1). The assembly is compressed into an
imposed area and sheared by oscillatory displacement
of the top boundary as shown in the setup schematic
in Fig. 1a. The rings are all identical with a thickness
t = 1.5mm, radius r = 3.3mm and height h = 10mm.
Rings are fabricated via moulding of polymerising liquid
silicone (see Methods and Supplementary Fig. 1), then
coated with talc powder to avoid adhesion and ensure
dry frictional interactions. The compression response of
the rings to a loading-unloading cycle (Fig. 1b) attests to
a perfect elasticity with no remaining permanent defor-
mations and high reproducibility, and is well recovered
by the finite element method (FEM) (see Methods for
details). In addition, the onset of the compression re-
sponse features a small stiffness decrease (Fig. 1c). De-
formed rings being slightly softer, a compressed assem-
bly of such rings develops heterogeneous deformations
as shown in the top view displayed in Fig. 1d (see also
Supplementary Video 1). This heterogeneous deforma-
tion upon compression is reminiscent of the mechanics
of cellular materials [30–32], including solid foams [33],
with the critical difference that here the unit cells do not
adhere each other and can therefore rearrange.

The assembly’s response to shear is explored by sys-
tematically varying the shear amplitude γ0 and the den-
sity of rings Φ. The oscillatory shear γ is imposed at
a fixed maximum shear rate of γ̇0 = 1.33 × 10−2 s−1,
low enough to ensure a quasi-static regime where inertial
or vibrational effects are negligible. The density is ad-
justed by varying the number of rings in the shear cell
and quantified by Φ = Nπr2h/A with rh = r + t/2 the
external radius of the rings, N the number of rings and A
the area of the shear cell. This is the density that would
correspond to the undeformed area of the rings, and we
focus on the regime above the hexagonal packing density
Φh = π

2
√
3
≈ 0.91. Initialisation is made by dispersing

the rings in the cell area and then manually lowering and
fixing the top arm at the desired height. The ring as-
sembly is, therefore, initially in a mechanically quenched
state. An acrylic plate on top of the assembly holds the
rings in 2D, preventing out-of-plane buckling.

The mechanical response to shear is probed locally via
image analysis and globally via a force sensor. Pictures
from an overhanging camera are taken regularly dur-
ing the cycles, such that the position, shape and neigh-
bours of each ring are identified and tracked all along the
shear cycles (Fig. 1e; see also Methods and Supplemen-
tary Video 2). A force sensor, placed between the driving
screw and the top arm, records the force FX necessary
to shear the assembly. The shear force FX for Φ = 1.0

and all investigated shear amplitudes is shown in Fig. 1f.
Unless stated otherwise, the presented measures repre-
sent the system in the steady state (see Supplementary
Table 1 for the cycles used in the analysis). The high
reproducibility of the shear response in Fig. 1f testifies
that the assembly indeed reached a steady state.

We then assess whether the ring assembly responds
more in a solid-like (jammed) or fluid-like (yielded) fash-
ion. To assess this response, a classic measure for partic-
ulate systems under oscillatory loading is the irreversible
displacement of the particles between two consecutive cy-
cles [34–39]. We define ∆u(i, c) as the norm of the ir-
reversible displacement of ring i occurring between the
start and end of cycle c. In Fig. 1d, rings are coloured by
their value of log (∆u/r) and the associated irreversible
displacement is drawn with a red arrow (magnified by a
factor 4). Even at such a high density, irreversible dis-
placements occur but are highly heterogeneous, with val-
ues spanning orders of magnitude within the assembly.
To explore how the irreversibility depends on the den-
sity and shear amplitude, for each parameter pair (Φ, γ0)
considered, we compute ⟨∆u⟩, the averaged irreversible
displacement over all tracked rings in the steady state.
The resulting map is shown in Fig. 1g. Two zones can be
identified: a fluid-like regime with significant irreversibil-
ity, which smoothly transitions to a solid-like zone with
barely any irreversible displacement, by increasing den-
sity or decreasing shear (see also non-affine trajectories
in Supplementary Video 3).

The transition between the fluid-like and solid-like fea-
tures is observed not only in the rings’ local movement
but also via the global mechanical response. From the
shear response FX(γ) of the whole assembly, we com-
pute for each cycle the first harmonic of the storage and
loss moduli, G′ and G′′, respectively [40] (see separated
map of G′′ and G′ in Extended Data Fig. 1). Identify-
ing when the ratio G′′/G′ is greater than 1 is a stan-
dard method to evaluate if the assembly yields or re-
mains essentially solid [41]. The map of log(⟨G′′⟩ / ⟨G′⟩)
shown in Fig. 1h, with ⟨G′′⟩, ⟨G′⟩ the moduli averaged
over the cycles in the steady state, recovers qualitatively
the solid- and fluid-like regions identified above from the
irreversible displacements (Fig. 1g). Indeed, the region
with high irreversible displacements coincides with a loss
modulus significantly larger than the storage one and in-
versely for the dominantly reversible region.

Exploring the mechanical response to shear at very
high density and shear amplitude, we identify a progres-
sive jamming transition of the ring assembly by either
reducing the shear amplitude or increasing the density.
To understand the driving factors of this transition, we
first quantify the structural properties of the assembly.
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Fig. 1 | Fluid-solid transition under oscillatory shear of an assembly of compressible rings. a, Schematic of the
experimental setup. A ring assembly is confined within a 2D cell with a fixed area. Oscillatory shear γ = (γ0/2) sin

(
˙2γ0t/γ0

)

is applied to the assembly via lateral motion of the top arm while the bottom one is fixed. Both top and bottom arms are
decorated with half-solid disks of the same dimension as the rings to transmit shear. A transparent acrylic plate placed on top
keeps the rings in the plane. b, Experimental and simulated (FEM) indentation response fy(δy), and c, associated stiffness
dfy
dδy

of a single ring compressed between two flat plates. The experimental curve is the averaged response over five different

rings from the assembly; upon loading and unloading, the shaded area shows the minimal and maximal values reached by the
rings during the compression cycle. The corresponding FEM response is made via a 3D simulation of the neo-Hookean
material model with Young’s modulus E = 1MPa and Poisson’s ratio ν = 0.45, reproducing the ring and indentation
geometry. The experiments and FEM, which agree quantitatively, feature a slight softening upon indentation, leading to solid
foam-like deformation heterogeneities upon compression of the ring assembly. d, Top view of the ring assembly (Φ = 1.04 and
γ0 = 0.53) and representative of the pictures used for image analysis. Here, each tracked ring is coloured over its detected
area by the value of its irreversible displacement log(∆u/r). The corresponding displacement is shown by a red arrow
(up-scaled by a factor 4). e, For each ring, we measure via image analysis its position (geometric centre), shape, neighbours,
and extent of each contact (length of the blue segments). We define two neighbourhood types: Voronoi neighbours share a
common edge in the Voronoi tessellation, and touching neighbours are in contact with a finite contact extent ℓc. The thin
orange silicone layer is applied in the inner part of the ring to help with detection and further imaging processes. See also
Supplementary Video 2. f, Shear response FX(γ) of the assembly for Φ = 1.00 and for shear amplitude γ0 ranging from 0.07
to 0.7. Six cycles in the steady state are displayed for each γ0. g, Intensity of the averaged irreversible displacement
log(⟨∆u⟩ /r) for varying density Φ and shear amplitude γ0. The average is calculated over all tracked rings and in the steady
state. h, Map of the ratio between the loss and storage moduli of the assembly, computed from the shear response Fx(γ) and
averaged over the cycles in the steady state. The corresponding Fx(γ) for Φ = 1.00 are shown in f, each coloured by its
corresponding value of log(⟨G′′⟩/⟨G′⟩). In g,h, and subsequent maps, the white dotted line is a geometric prediction
introduced thereafter (Eq. (1)), but now serves as a reference to help compare the maps and identify solid and fluid regions.

A partially crystallised fluid and an amorphous solid

The presence or absence of irreversible displacements
upon cyclic shear in the steady state highlights that ring
rearrangements and associated structural deformations
play a crucial role in the mechanical response of the as-
sembly [42, 43]. We then measure the structural differ-
ences between the solid and fluid regions and how they
evolve from their initial quenched state. With all rings
having the same size, the configuration with the high-
est density and minimal shape deformation (and hence
minimum elastic energy) is the hexagonal packing. We
thus use the hexagonal bond orientational order Ψ6 as
the structural indicator of the assembly [44]. For each
ring j, the hexagonal order is computed by Ψ6(j) =

(1/nj)|
∑nj

k=1 e
6iαjk | with nj the number of Voronoi neigh-

bours and αjk the angle between the line passing through
the centre of the two rings and the x axis (the direction
of the shear). The value of Ψ6 is 1 for a ring in a perfect
hexagonal lattice and continuously decreases to 0 as the
structure deviates from the hexagonal one.

As the assembly accumulates shear cycles, we compare
in Fig. 2 (see also Supplementary Video 4) the structural
evolution of configurations for two cases located near the
border between the jammed and yielded regions, with
each case positioned on the opposite side of the border.
After mechanical quenching, both configurations start in
an amorphous state with a flat probability distribution
P (Ψ6), but their evolution with cycling strongly differ.
In the yielded region, for (γ0,Φ) = (0.4, 1.00) shown in
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Fig. 2 | Crystallising fluid and amorphous solid. a,
Left, probability density profiles of the hexagonal bond
orientational order Ψ6 for an assembly at
(γ0,Φ) = (0.4, 1.00) in the yielded region. The profiles are
shown for the assembly before shear and after 20, 40 and 60
shear cycles. Right, corresponding snapshots of the assembly
after cycling, where each ring is coloured by its Ψ6 value.
The assembly shows a progressive growth of crystalline
regions separated by melted ones. b, Same quantities as in a
but for an assembly with higher density and same shear
amplitude, (γ0,Φ) = (0.4, 1.04), now located in the jammed
region. Here, no significant structural changes are observed,
and despite high shear, the assembly remains amorphous.
See also Supplementary Video 4. c, Map of the proportion of
rings belonging to crystal clusters (with Ψ6 > 0.75) in the
steady state. The corresponding snapshots of the assemblies
in their steady states, with the rings coloured by their Ψ6

values, are shown on the right for γ0 = 0.25 and all
investigated densities. See also Supplementary Video 5 for
the time evolution of Ψ6.

Fig. 2a, cycling induces drastic structural changes with
the progressive growth of distinct crystal clusters. The
probability density increases close to Ψ6 = 1 while it
decreases for low values. In contrast, for larger densi-
ties within the jammed region (with (γ0,Φ) = (0.4, 1.06)
shown in Fig. 2b), no significant structural changes occur

upon cycling, and the assembly remains in an amorphous
phase. We then measure the crystallised portion of the
assembly, or proportion of rings having Ψ6 > 0.75, in the
steady state over the parameter space (Fig. 2c). All the
assemblies in the solid region feature almost no structural
changes and remain amorphous, while the proportion of
the crystal clusters decreases with increasing density in
the fluid region (Fig. 2c; see also Supplementary Video 5).
Rearranging rings within a given surface area tend to
crystallise to reduce their overall elastic energy, as the
hexagonal packing is the most compact structure with-
out shape deformations. However, the growth of crystal
clusters is limited by the presence of rings deformed by
compression, which necessarily exist for high densities
and prevent crystallisation.

The structure of the ring assembly in its steady state
differs drastically between the yielded and jammed re-
gions. The fluid-like region is characterised by hexagonal
crystal clusters separated by a melted, disordered phase.
This partial crystallisation is typical of granular media
under sufficient shear where reorganisations lead to struc-
tural changes [45–48]. Even if essentially crystallised,
the yielded phase still displays a fluid-like mechanical
response with irreversible displacements (Fig. 1g,h). In
contrast, no crystallisation occurs in the jammed region,
where the assembly remains amorphous almost without
rearrangements. Even under high shear, the rings stick
together to keep the same structure. In the following,
we delve into the dynamics during shear cycles to inves-
tigate the interplay between structural and geometrical
deformations of the rings.

Large geometrical deformations absorb shear and
hinder rearrangements

We now focus on the deformation of rings during shear
cycles to understand how yielded and jammed regions
respond to shear. The geometry, of the rings is quanti-
fied by the shape index q = (ring perimeter)/

√
ring area,

a classic quantity used in highly deformable assemblies
like epithelial tissues [16, 17] to assess how far a convex
shape is from a circle. The shape index takes the value
q = 2

√
π ≈ 3.54 for a perfect circle and increases when

the ring gets deformed. As the rings are slender objects,
they deform mostly by flexion rather than stretching.
Thus, q is mainly increased by reducing the area while
the perimeter is almost unchanged. This contrasts with
emulsions or tissues where most deformations originate
from a change in perimeter and not the area [7, 27]. The
perimeter and area of the rings are obtained via image
analysis, and a Fourier decomposition is used to smooth
the pixelated shape and reduce the shape to a few de-
scriptors [27]. The resulting measure of q during a shear
cycle is shown in Fig. 3a for one ring within an assembly
with parameters (γ0,Φ) = (0.4, 1.00). For each cycle c
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Fig. 3 | Competition between geometrical and
structural deformations. a, The geometrical deformation
of the rings is quantified by the shape index q. The
evolution of q within a cycle is shown for one ring in a
(γ0,Φ) = (0.4, 1.00) assembly. Each marker goes with an
associated ring snapshot. We extract q̃ and ∆q, the average
and amplitude variation from the shape trajectory. b,c,
Average shape of the assembly q̃ and shape variation ∆q as
a function of shear amplitude for each density. The values
are averaged over all tracked rings in the steady state. d,e,
Map of the geometrical Sc and topological Tc strains of the
assembly. The total strains here are the cumulative sums of
the norm of the frame-to-frame strains estimated over the
whole assembly and in the steady state.

and tracked ring, we define two quantities from the shape
trajectory: the average deformation q̃ = ⟨q⟩cycle and the
geometrical fluctuation ∆q = max(q)cycle −min(q)cycle.

In the steady state, the mean shape index and fluc-
tuation are then averaged over all tracked rings, and
their dependence on shear is compared for each density
Fig. 3b,c. As expected, the average geometrical defor-
mation q̃ increases steadily with the density Fig. 3b. For
all densities, increasing shear amplitude drives significant
shape fluctuations during shear cycles, and the higher the
density, the more pronounced the geometrical changes
(Fig. 3c). Thus, a higher density contributes, in addition
to naturally increasing the average geometrical deforma-
tion, to promoting shape changes for a given imposed
shear. Ring assemblies, therefore, use their compressibil-
ity and shape-changing abilities to absorb imposed exter-

nal shear, and they do so more efficiently as the density
increases.
To grasp the combined role of geometrical changes and

structural rearrangements leading to jammed or yielded
assemblies, we quantify these two aspects by dedicated
strains derived for epithelial tissue deformations [15]. For
each ring and between each time frame, we track the
bond vectors between touching neighbours (Fig. 1e and
Supplementary Video 6). The geometrical strain S∗ is
derived from the change in bond length and orientation
and quantifies changes in size and shape within the as-
sembly. In contrast, the topological strain T ∗, based on
the appearance or creation of bonds due to rearrange-
ments, captures the change in the topology of the contact
network and then quantifies the structural deformations
of the assembly. More details on these quantities are
given in the Methods, and their step-by-step derivation
is in the Appendix of Ref.[15]. The strains S∗ and T ∗ are
computed between each time frame and for the whole as-
sembly. Their norm is then summed over all the cycles in
the steady states to obtain the quantities Sc =

∫
t
∥S∗∥dt

and Tc =
∫
t
∥T ∗∥dt shown in Fig. 3d,e. From the map of

logSc over (γ0,Φ) in Fig. 3d, we observe that geometrical
changes increase significantly with both shear amplitude
and density as observed in Fig. 3c. By contrast, the map
of log Tc in Fig. 3e shows that structural deformations,
while increasing with shear amplitude, are diminished by
higher densities. As a result, the region where changes
in the topology of the contact network are significant co-
incides with the fluid region identified in Fig. 1g,h. Yet,
the geometrical deformations vary regardless of the fluid
or solid regions.

In contrast to confluent bi-dimensional active cell mod-
els where more significant deformations lead to yielding
[18], here, deforming the assembly by increasing the den-
sity fosters jamming by absorbing shear and hindering
structural rearrangements. We then investigate the ring-
ring interactions to understand the mechanisms under
which large shape deformations impede structural ones.

Geometry and friction concur to generate effective
shear adhesion between rings.

We introduce a microscopic ersatz comprising two half-
rings sequentially compressed and sheared to measure the
interaction between rings. Then, we will link the sign of
the shear force, which would promote or prevent struc-
tural rearrangements, to the assembly’s fluid-solid tran-
sition.

We measure, via FEM and experiments, the shear re-
sponse of two clamped rings compressed by an amount
δy (Fig. 4a and Supplementary Video 7). With FEM, we
systematically vary the frictional interaction via the fric-
tion coefficient µ of the sheared interfaces (Fig. 4b) and
the compression δy between the rings (Fig. 4c). Experi-
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Fig. 4 | Friction and geometrical deformations produce an effective shear adhesion between the rings. a,
Ring-ring interaction experiments and FEM simulations. Two facing half-rings are compressed over a distance δy and then
sheared laterally until they lose contact. Displayed are two FEM snapshots showing the contact pressure between the rings
after compression, before (top) and after (bottom) a lateral shear displacement of x = r. See also Supplementary Video 7.
b,c, The resulting shear interaction force fx is measured as a function of the lateral displacement x. Negative (positive)
values indicate an attractive (repulsive) force between the rings. Experimental responses are averaged over 3 distinct pairs,
and shaded areas represent max and min values obtained from the different pairs. Panel b shows the shear response fx(x) for
δy = 950µm and the friction coefficient µ = 0.1, 0.3, 0.6 varied in the FEM. The experimental response matches that of FEM
for µ = 0.6. Panel c shows the shear response fx(x) for µ = 0.6, for increasing confinement δy = 200, 600, 950µm. In this high
friction regime, fx remains negative until the separation of the rings. We measure xr(δx, µ), the displacement needed to
switch from attractive (fx < 0) to repulsive (fx > 0) shear interactions. d, Experimental measure of the attractive-repulsive
threshold shear γr(Φ), obtained by translating local quantities (δy, xr) to global ones (Φ, γr), together with results from FEM
(dashed lines) and the geometrical predictions (dotted lines) for µ = 0.1, 0.3, 0.6. This curve γr(Φ) for µ = 0.6 is the one
drawn in the phase diagrams shown so far (e.g., Fig. 1g,h), marking the fluid-solid transition of the assembly (fluid-like for
γ0 > γr and solid-like otherwise). e, (Φ, γ0) map of the difference between the imposed shear displacement x0 and the
measured maximal contact size ⟨ℓmax

c ⟩, averaged over all tracked rings in the steady state. The geometrical prediction and
local measurements of the attractive-repulsive threshold γr correspond to the region where y0 ≈ ⟨ℓmax

c ⟩. In this high friction
and large geometrical deformations limit, the extent of the contacts ℓc mainly controls the jamming transition.

mentally, we test rings taken from the assembly by apply-
ing the same compression values as in FEM. We find the
best agreement between the experiments and the FEM
for µ = 0.6, constituting a measure of the experimen-
tal friction coefficient. In the absence of friction, the
shear force fx is instantly positive (repulsive) as elastic
deformations push the rings away from each other. With
friction, however, fx starts negative (attractive) and a fi-
nite lateral displacement xr(δy, µ) is required to make it
repulsive (fx > 0). The synergy of geometrical deforma-
tion and friction thus produces an attractive interaction,
or effective adhesion, between the rings until sufficient
shear is applied. The role of shape change to generate
an effective adhesion under shear is reminiscent of the
rheology of cohesive granular media [49], where the low
stiffness of the grains also participates in producing a

higher effective adhesion. We argue next that the pres-
ence or absence of this effective adhesion under shear is
at the root of the assembly’s fluid or solid macroscopic
response.

We now give a geometrical prediction of the finite lat-
eral displacement xr necessary to switch the shear inter-
actions force from attractive to repulsive, i.e., fx(xr) = 0.
This distance is a function of the initial compression δy
and the friction between the rings, µ. Two cases emerge
in the way xr(δy, µ) is determined. In the first case, the
rings remain in contact when fx switches from negative
to positive (e.g., Fig. 4b for µ = 0.1 and 0.3). In this
case, assuming Amontons-Coulomb frictional properties
and reducing the contacting interfaces to a point, one can
directly link the sign of the shear force fx to the lateral
displacement and obtain xr(δy, µ) = µ(2rh−δy). By con-
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trast, in the second case where fx remains negative until
the rings are fully separated (e.g., Fig. 4c), xr is given
by the extent of the initial overlap between the rings:
xr(δy, µ) = 2rh

√
1− (1− δy/(2rh))2. Now that we have

a prediction for the microscopic ring-ring interactions, we
must translate the compression δy and local lateral dis-
placement x to the global variable density Φ and shear
γ. Assuming an hexagonal structure of density Φh, an
isotropic local overlap δy directly translates into a density
by Φ(δy) = Φh/(1− δy/(2rh))

2. For the shear γ, too, by
using its local counterpart, i.e., the local shear imposed
between the two half rings, we obtain γ = x/(2rh − δy).
Schematics of the underlying geometrical predictions are
shown in Extended Data Fig. 2. By combining the ex-
pressions of xr(δy, µ) with the expressions of Φ(δy) and
γ(y, δy), we can finally express the repulsive shear γr at
which the interactions become repulsive as a function of
global variables (γ,Φ), as follows:

γr(Φ, µ) =

{√
Φ
Φh

− 1 if γr < µ

µ if γr ≥ µ
(1)

In Fig. 4d, we compare γr from the prediction against
FEM and experimental measurements and find a perfect
match. In the high friction case (γr < µ), the threshold
γr(Φ) is simply set by the extent of contacts, yielding
γr(Φ) =

√
Φ/Φh − 1. Experimentally, the explored den-

sity range and the estimated friction coefficient µ ≈ 0.6
are such that we remain in this high friction limit. In soft
spheres without shape changes, the jamming transition
also features a scaling between yielding and density [50]
but occurs at a much lower density and with a different
scaling.

With repulsive interactions between rings, we expect
structural rearrangements to be promoted and, inversely,
hindered if interactions are attractive and act as an effec-
tive adhesive force. The shear γr can then be viewed as a
yield shear, where rearrangements leading to fluid-like re-
sponse are expected for γ0 > γr, and a solid-like jammed
assembly for γ0 < γr. Indeed, the line drawn by the ge-
ometric prediction of Eq. (1) qualitatively separates the
fluid and solid-like regions in the (Φ, γ0) parameter space
(Fig. 1g,h), which also accompany significant changes of
the contact network topology (Fig. 3e). This geometric
boundary γr(Φ) =

√
Φ/Φh − 1 is set by the extent of

the contact between rings, which increases with density.
To verify that the contact extent is a major factor con-
trolling the fluid-solid transition, we measure ℓmax

c , the
largest contact length among all touching neighbours, for
each ring and at each time step. We then compute the
difference between the equivalent local lateral displace-
ment amplitude x0 = γ0(2rh − δy) = γ02rh

√
Φh/Φ and

⟨ℓmax
c ⟩, averaged in the steady state (Fig. 4e). The geo-

metrical prediction of γr matches with the region where
x0 ≈ ⟨ℓcmax⟩. The fluid-solid regions are then defined by
whether the shear is large enough to overcome the effec-

tive adhesion and move the rings by a distance greater
than the maximal contact length. Therefore, in contrast
with rigid granular media where the number of contacts
controls the jamming transition [4], the transition with
squishy grains in a high friction limit seems to be strongly
controlled by the extent of the contacts (Extended Data
Fig. 3).

Discussion

We established that large shape deformation may rad-
ically modify the mechanisms by which an assembly
yields. At high density, far into the jammed state, the
number of contacts becomes irrelevant, and their ex-
tent, coupled with frictional interactions, becomes cru-
cial. The contact size is intrinsically linked to the geo-
metrical deformations of the elements, so the shape also
has a crucial role in the rigidity transition. Geometry
and friction concur to generate an attractive force be-
tween rings under shear, and sufficient shear must be
applied to overcome this effective adhesion. In the high
friction limit, the shear must be enough to separate the
rings completely to overcome the adhesion; hence, a sim-
ple geometric formula (Eq. (1)) sets the transition be-
tween repulsive and attractive interactions. Below this
transition (when the interactions are attractive), struc-
tural rearrangements are strongly hindered, leading to a
jammed assembly.

However, these results are valid only within signifi-
cant friction and shear limits. Our geometrical model
implies that a frictionless assembly yields at an infinites-
imal shear as γr = µ. By considering only the inter-
actions between two rings, we neglect collective effects,
such as the caging [51], that would require a finite shear
to yield even without friction. How caging is affected by
significant shape changes is still an open question.

Another striking property of the ring assembly is the
drastic structure change between the fluid and solid state.
Counterintuitively, the fluid phase features highly crys-
tallised portions, while the solid remains in an amorphous
structure. Similarly to the link between active matter
and sheared granular media [52], one may also draw a
parallel between this fluid-like crystal under shear and
active crystals [53, 54].

From an engineering perspective, assemblies of highly
deformable elements combine frictional interactions and
structural rearrangement to dissipate energy while keep-
ing a significant elastic component [55]. Ring assemblies
then have great potential as a tunable shock absorber,
with the density serving as a knob to tune dissipation
and response to a shock, keeping even a high dissipative
potential in the solid and reversible state. To develop
this axis, it would be essential to explore the 3D version
of such assemblies and their response to inertial forces.
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Methods

Ring fabrication
Rings are fabricated from silicone elastomer (Elite Dou-
ble 22, Zhermack) in a urethane mould (Clear Flex 50,
Smooth-On). The ring’s material is chosen to remain
elastic without permanent deformation, even under high
and prolonged deformations. The mould material has
been selected for its deformability, which eases demould-
ing without tearing the rings, and its very low affinity
with silicone, ensuring no adhesion with the rings and
reusability. The rings have a thickness of t = 1.5mm, a
midline radius r = 3.3mm and height h = 10mm. To
help with later image analysis, a thin layer (1mm) of
dyed (Silc Pig Electric Orange, Smooth-On) silicone is
applied on the inner portion of the ring surface (from
r − t/2 to r). This extra layer does not affect the me-
chanics of the ring (the additional layer is not reproduced
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in FEM but still compares well with the experiments,
Fig. 1b,c). The rings are slightly coated with talc pow-
der to avoid adhesion and ensure reproducible frictional
properties. See Supplementary Fig. 1 for an illustration
of the protocol.

Shear setup

The shear cell comprises a fixed bottom arm and a mov-
able top arm with movements constrained parallel to
the bottom. The two sides of the cell freely rotate re-
spectively to the top and bottom arms via joints of ra-
dius 40mm, and freely slide through the top arm via
roller bearings to adjust their length under large oscilla-
tory shear. The distance between the two side arms is
W = 300mm, and the one between the top and bottom
arm is T = 75mm. Both bottom and top arms are dec-
orated by rigid (3D-printed in PLA and then glued) half
disks of radius rh = r+t/2 = 4.05mm (external radius of
the rings). The whole setup rests on a fixed acrylic plate,
and the ring assembly is confined vertically by a 3mm
thick acrylic plate blocked in the vertical direction but
free to move laterally. The top arm imposes shear via a
driving screw controlled by a stepper motor (AZM 46AC-
TS10R, Oriental Motor). The motor imposes a cyclic

horizontal motion X = (X0/2) sin
(
2Ẋ0t/X0

)
, with X0

the displacement amplitude and Ẋ0 = 1mm/s the max-
imum shear speed, kept constant for all the amplitudes
considered. The resulting oscillatory shear is γ = X/T .
The density of the rings is calculated by Φ = Nπrh

2/A,
where A = 16500mm2 is the area of the shear cell, eval-
uated by taking into account the size of the joints and
the top and bottom granular boundary conditions. With
the highest shear considered, this area varies between
16500mm2 and 17500mm2 within a shear cycle (∼ 6% of
variations). Consequently, densities are defined with un-
certainties of∼ ±0.02. The motor, force sensor, and cam-
era are controlled and synchronised via a custom Labview
program.

Force measurements

All forces reported here are measured with a flat six-axis
(forces and moments along the three directions) force sen-
sor (USX10-H10-500N-C, TecGihan) and transferred to
a computer via 2 data acquisition cards (USB-6001, Na-
tional Instrument). To measure the shear response of
the assembly (Fig. 1f), the sensor is inserted between
the top arm and the driving screw. The top arm is
slightly lifted from the bottom acrylic plate to avoid
measuring the frictional response of the setup. All six
axes of the sensor are recorded at a rate of 20Hz. The
first harmonic of the loss and storage moduli are com-

puted by G′ = (2/πγ0)
∫ 2π

0
Fy(θ) sin θdθ/WH and G′′ =

(2/πγ0)
∫ 2π

0
Fy(θ) cos θdθ/WH with θ = (t − tc)2γ̇0/γ0

the normalised time since the start of cycle c [38]. To
measure the compression response of the rings (Fig. 1b,c)
and their interactions (Fig. 4b,c), a distinct setup is used
where positions are imposed manually via a micrometric

stage and 100mm long arm levers, and forces are mea-
sured via the moments output of the sensor. For the com-
pression response, one free ring is confined between two
rigid walls, while for the interaction experiments, a PLA
3D-printed part holding half of the rings into a groove
clamps the pair of rings. For one interaction experiment,
the six axes of the sensor are recorded continuously at
100Hz while compression and shear are imposed via man-
ually moving the micrometric stage. The displacement is
made by step of 50µm every 10 s. For every step, the
position is changed between 0 and 5 s, and the reported
value for this new position is average over the time in-
terval between 7 and 9 s. The arm lever’s high but finite
stiffness is measured in compression and shear and used
to correct the displacement imposed on the rings.
Finite Element Method (FEM)

The mechanical tests using full 3D FEM were performed
with the software COMSOL Multiphysics 6.1. We use
symmetries to model only the necessary portions of the
ring for the compression (Fig. 1b,c) and shear (Fig. 4)
simulations. The rings are cylinders of height H along
the z axis and of external radius rh in the xy plane. Rings
are compressed and sheared in the xy plane, and we as-
sume stress-free surfaces at z = 0 and z = H. From
symmetries, we model only half of the rings, from z = 0
to z = H/2, with a free surface at z = 0 and a mirror
symmetry (no outward displacement) at z = H/2. The
tetrahedral mesh size is fixed and set to a minimum of√
rt/5, chosen to optimise convergence. The material is

the Neo-Hookean model with Young modulus E = 1MPa
and Poisson’s ratio ν = 0.45. The mechanical tests are
performed via a stationary approach and by imposing
displacements. For the compression tests (Fig. 1b,c), the
ring is compressed between two flat and infinitely rigid
blocks, and contacts are solved via the Nitsche method.
For the interaction tests (Fig. 4), two facing rings are cut
again along the x direction to form semi-circles. To clamp
the rings, no displacement in the xz plane is imposed on
the cut surfaces of the top ring. The position of the bot-
tom ring, first along y for compression and then x for
shearing, is also controlled by imposing the displacement
of its cut surfaces. The contacts are also solved using the
Nitsche method, but this time adding a Coulomb fric-
tional interaction term with a unique friction coefficient
µ. The resulting shear force fx is then obtained by inte-
grating the σyx component of the stress on the surfaces at
y = 0 of the bottom ring, where the shear displacement
is imposed.
Image acquisition and analysis
Pictures are acquired via a camera (EMVC-CB1400C3
with an EMVL-MP814 lens, Misumi) placed on top
of the assembly. Indirect lighting is obtained by
shining a light-emitting diode panel on a white-
board. Irrespective of shear amplitude, 15 pictures
per shear cycle are taken (30 pictures for (γ0,Φ) =
(0.400, 0.94), (0.533, 0.94), (0.533, 1.00) where tracking is
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more challenging), and a 5 s pause between the cycles
is implemented to ensure that each cycle’s first and
last pictures correspond to γ = 0. The pictures con-
sist of 4608 × 1300 pixels, resulting in a resolution of
13.05 pixel/mm. Then, a custom-made Matlab script
processes all the pictures. Using the orange-coloured in-
ner part of the rings, they are detected and separated
via colour and saturation thresholding. A group of pix-
els within its contour is attributed to each detected ring
and, for instance, used to represent ring-specific quan-
tities via colour coding, as in Fig. 1d. The geometri-
cal centre of the pixels defines then the position of the
ring, while its shape, or contour, is measured via a cir-
cle Fourier decomposition [27]. The polar coordinates
R(θ) of the outermost pixels of the contour are mea-
sured with the geometrical centre of the ring as the ori-
gin. Using the fast Fourier transform, the Fourier co-
efficients (ak, bk) of the contour are measured such that

R(θ) = rh
M∑
k=0

(ak cos θ + bk sin θ) up to M = 5. In addi-

tion to the position and shape of the ring, we also detect
their neighbours via two methods. First, we find topo-
logical neighbours via their position by performing the
Delaunay tessellation. Based on the resulting Voronoi
diagram, we defined Voronoi neighbours as rings shar-
ing a common edge and no farther than 2.5r. From
this Voronoi neighbourhood, quantities such as the ori-
entational bond order parameter Ψ6 are computed (see
Fig. 2). The other neighbourhood detection method aims
to detect the rings in contact. A given ring’s contour is
dilated by 8 pixels, and its touching neighbours are those
whose contour overlaps. Based on these touching rings,
we then compute the geometrical and topological strains
(Fig. 3d,e, detailed below) and the contact extents for
Fig. 4e. To measure the extent of the contacts ℓc, we
compute the long axis of the overlapping contours. In-
deed, each overlap has an approximate ellipsoidal shape
with its long axis along the contacting surfaces (see ring
overlaps in Extended Data Fig. 2b). This measure over-
estimates the actual contact length because of the dilata-
tion of the central ring, and we found that multiplying
by 0.7 gives a visually convincing measure.

Geometrical and topological strains

To distinguish quantitatively the geometrical deforma-
tions (change of shape) from the structural or topological
ones (change in neighbours), we follow the method intro-
duced in Ref. [15]. Initially developed for epithelial tissue
development, this strain quantification can be directly
applied to our ring assembly. The method is described
in great detail in the Appendix section of Ref. [15], so
here, we only give the general methodology and high-
light the specificities of our ring assemblies. Strain eval-
uation is based on the variations of the texture tensor
of the assembly computed from the links between each
ring. The texture tensor of the assembly is defined as

M =
∑
i

1
2

∑
k∼i

l⃗ik ⊗ l⃗ik, with l⃗ik the vector linking the

position of ring i to its neighbour k, i spans all tracked
ring of the assembly and k all neighbours of ring i and
l⃗ik ⊗ l⃗ik = l⃗ik l⃗

T
ik is the tensor product of l⃗ik by itself. In

contrast with epithelial tissues, ring assemblies are not
confluent, so we must specify what neighbours we con-
sider here. As rings interact only via contact, we con-
sider only touching rings as neighbours to compute the
texture tensor. Between two consecutive time frames,
the strains are computed from the difference of texture
tensor M between the two frames. The difference within
links that are preserved between the two frames will be
the base to compute the geometrical strain S∗, while the
appearing and disappearing links due to rearrangements
only (no fusion or division, unlike in epithelial tissues)
will contribute to the topological strain T∗. To make the
difference in texture tensor dimensionless and endowed
with strain properties, such as insensitivity to rigid mo-
tion, a rigorous normalisation detailed in Ref. [15] is nec-
essary. Between two time frames, we can compute two
strain tensors, S∗ and T∗, rigorously quantifying the ge-
ometrical and topological deformation of the ring assem-
bly. To compare how the assemblies deform during shear
cycles as a function of the control parameters (Φ, γ0),
we take the norm of these strain tensors and sum them
over the 6 shear cycles in the steady state. The norm
is the square root of the sum of the squared elements of
the matrices. The resulting quantities, Sc =

∫
t
∥S∗∥dt

and Tc =
∫
t
∥T∗∥dt, are the scalar quantities shown in

Fig. 3d,e.
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Extended Data Fig. 1 | Loss and storage moduli across the parameter space. The first harmonic of the loss and
storage moduli are shown in a and b, respectively. The moduli are normalised by the Young modulus of the rings, E = 1MPa.
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a b

c d

Extended Data Fig. 2 | Schematic for the geometrical predictions. a, First case to estimate the lateral displacement
xr which for which the lateral force fx becomes repulsive (fx > 0). The contact is reduced to a single point with an
orientation α given by the line linking the two intersection points of the half-circles. Assuming frictional Coulomb interactions,
the amplitude of tangential Tt and normal Tn contact forces are linked by the friction coefficient µ. The lateral force fx is
the resultant of the contact forces projected on the lateral axis: fx = (Tn +Tt) · ex. The expression for xr is then found by
solving the equation fx(x = xr) = 0. This prediction is valid if the two rings are still in contact at x = xr = µ(2rr − δy). b, If
the rings are not in contact at x = xr = µ(2rr − δy), we have to consider the second case where fx remains attractive until
complete separation of the rings. In that case, xr is the no-overlap distance given by the initial contact extent ℓc after
compression. c, To link the global assembly density Φ and the local compression δy, we assume an isotropic and homogeneous
compression of an assembly initially in a hexagonal packing. The density is estimated by considering a central ring and the
hexagon with corners at the centre of its 6 neighbours and by taking the ratio between the area of the ring inside the hexagon
(1 full ring + 6 third of rings) and the area of the hexagon. In the hexagonal lattice, the hexagon edge is 2rh and reduces to
2rh − δy under compression, while the area of the rings is constant (Φ is estimated from the area of undeformed rings). d,
Shear is a scaleless quantity defined as the ratio between the lateral displacement and the height of the system. The shear
defined for the assembly as γ=X/T is then identical to the one in the local interaction experiments, γ = x/(2rh − δy).



14

a

c d

0.95 1 1.05 1.1
0

0.2

0.4

0.6

4.5

5

5.5

density, 

sh
ea

r 
am

pl
itu

de
, 

0.95 1 1.05 1.1
0

0.2

0.4

0.6

0

0.5

1.0

1.5

density, 

sh
ea

r 
am

pl
itu

de
, 

0.95 1 1.05 1.1
0

0.2

0.4

0.6

0

0.5

1.0

1.5

density, 

sh
ea

r 
am

pl
itu

de
, 

b

0.95 1 1.05 1.1
0

0.2

0.4

0.6

-1

-0.5

0

0.5

1

density, 

sh
ea

r 
am

pl
itu

de
, 

Extended Data Fig. 3 | The average coordination number is irrelevant for highly compressed assemblies. a,
Average of the coordination number Zr of the assemblies in the steady state. The coordination number of a ring is defined as
the number of touching neighbours. No clear tendency with γ0, Φ, or the fluid/solid regions is noticeable. b, Reproduction of
Fig. 4e, showing that the relative value between the shear distance x0 and the averaged maximal contact length ⟨ℓcmax⟩ marks
a clear separation between fluid and solid-like regions. c, local average lateral displacement x0 imposed to the assembly over
the parameter space (γ0,Φ). It is a deterministic quantity computed following x0 = γ02rh

√
Φh/Φ. d, For each tracked ring in

the steady state, the contact length ℓc with each of its touching neighbours is measured (see Methods). At each time-step, the
highest ℓc of each ring is averaged over all rings, and then all time-steps to give ⟨ℓcmax⟩. While x0 mainly increases with the
shear γ0, ⟨ℓcmax⟩ is increasing with density Φ. The two values coincide around the fluid-solid separation line predicted by

γr(Φ) =
√

Φ/Φh − 1.
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VIDEO CAPTIONS

Supplementary Video 1: Video of the first ten shear
cycles for the assemblies with (γ0,Φ) = (0.4, 0.94)
(top) and (γ0,Φ) = (0.4, 1.16) (bottom).

Supplementary Video 2: Illustration of the measure-
ments made on the rings, here shown for a single
ring and parameters (γ0,Φ) = (0.4, 1.0). The shape
is highlighted in red, and the Voronoi diagram is in
fine white dotted lines. Each touching ring and its
corresponding bond vector is white, while the con-
tact width is blue.

Supplementary Video 3: Non-affine trajectories of
the rings in the steady state. The affine displace-
ment due to the instantaneous shear strain is re-
trieved for each ring trajectory and time frame
along shear cycles.

Supplementary Video 4: An animated version of
Fig.2a,b showing the probability distribution of Ψ6

with the number of shear cycles.

Supplementary Video 5: Stroboscopic evolution of
the structure of the assemblies with the number

of shear cycles. The video shows, for all the ex-
periments, snapshots of the assembly at the start
of each cycle with each tracked ring coloured by
its Ψ6 value. The assembly is darkened when it
reaches its maximal cycling number.

Supplementary Video 6: Bond vector dynamics of
the assemblies. The video shows, for all the ex-
periments, snapshots of the assembly upon cycling
in the steady state. For each picture, the links that
are conserved are coloured in white, the ones dis-
appearing at the next frame in blue, and the ones
appearing from the previous frame in red.

Supplementary Video 7: Video showing the FEM
simulation of ring-ring experiments, with snapshots
of the rings on the left, and the corresponding
shear force fx(x) in the right. The results for
µ = 0.3 and µ = 0.6 are shown for a compression
of δy = 950µm.
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a b

Negative mold 
(PLA, D printed)

Positive mold 
(Silicone, Smooth-On)

Negative mold 
(Uretane, Smooth-On)

Molded rings
(Silicone, Zhermack) 

Ring holder and cover
(PLA, 3D printed)

Finished rings
(Silicone + dye, Zhermack)

c d e f

Supplementary Fig. 1 | Fabrication process of the rings. A negative mould 3D printed with PLA (a) is used to
fabricate a positive mould made of silicone (b). The silicone mould itself is used to fabricate a urethane negative mould (c),
in which the rings are made (d). Then, the rings are placed in a 3D printed holder with a cover (e), leaving only the internal
half of the ring top surface visible. A thin layer of dyed silicone is then coated on the surface to give the final rings (f). Before
experiments, the rings are placed in a sealed plastic bag with talc powder and thoroughly shaken to ensure a homogeneous
coating of the rings. The multiple moulds were used to satisfy the following constraints: the mould needs to be flexible to
ensure demoulding without breaking the rings, silicone sticks to silicone moulds, but not at all with urethane (also a soft
polymer), urethane sticks to everything except silicone. Only the choice of the silicone for the rings and its coloured top is
crucial (Elite Double 22, Zhermack) to ensure no plastic deformation of the rings, even under prolonged and high
deformations. The red scale bar in the pictures measures 10mm.

γ0 = 0.667
(X0 = 50mm)

Nc = 100
Rtracked = 84.8%

Nc = 15
Rtracked = 91.2%

Nc = 15
Rtracked = 95.9%

Nc = 15
Rtracked = 96.7%

γ0 = 0.533
(X0 = 40mm)

Nc = 100
Rtracked = 92.9%

Nc = 50
Rtracked = 95.9%

Nc = 40
Rtracked = 97.4%

Nc = 45
Rtracked = 97.5%

γ0 = 0.400
(X0 = 30mm)

Nc = 100
Rtracked = 98.3%

Nc = 100
Rtracked = 98.7%

Nc = 60
Rtracked = 99.1%

Nc = 75
Rtracked = 95.3%

γ0 = 0.267
(X0 = 20mm)

Nc = 100
Rtracked = 99.3%

Nc = 100
Rtracked = 98.4%

Nc = 100
Rtracked = 100%

Nc = 100
Rtracked = 99.7%

γ0 = 0.133
(X0 = 10mm)

Nc = 100
Rtracked = 100%

Nc = 100
Rtracked = 100%

Nc = 100
Rtracked = 99.4%

Nc = 100
Rtracked = 99.2%

γ0 = 0.067
(X0 = 5mm)

Nc = 100
Rtracked = 99.7%

Nc = 100
Rtracked = 99.7%

Nc = 100
Rtracked = 100%

Nc = 100
Rtracked = 100%

Φ = 0.94
(N = 296)

Φ = 1.00
(N = 320)

Φ = 1.06
(N = 340)

Φ = 1.12
(N = 360)

Supplementary Table 1 | Experimental parameters for the shear experiments. The shear amplitude γ0 is set by
the lateral displacement amplitude of the top arm, X0, while the density Φ is controlled by the number of rings N . For each
set of the parameters (γ0,Φ), the total number of cycles Nc (including the transient and the steady state) and the proportion
of rings successfully tracked Rtracked are indicated. The last 6 available cycles (for instance, from cycle 45 to 50 if Nc = 50)
are considered to be in the steady state and are used for the analyses presented in this work. For instance, for the parameter
(γ0,Φ) = (0.400, 1.06), the measures are made on the cycle [55, 56, 57, 58, 59, 60]. Progressive and out-of-plane extrusion of
some rings limits the number of valid cycles for high shear and density. Due to the extreme deformability of the rings, upon
cycling, some rings manage to escape the plane of the assembly despite the cover plate by out-of-plane deformations. In
Supplementary Fig. 2, we verify that the results and following conclusions are not dependent on which cycles we consider as
the steady state and make the measurements.
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Supplementary Fig. 2 | The quantities in the (γ0,Φ) parameter space are not sensitive to the definition of the
steady state. The parameters map presented in the main figures are reproduced here, for the cycle numbers fixed to be 10
to 15 for all the parameters, the highest numbers common to all parameters. a, Irreversible displacement. b, Ratio between
the viscous and elastic moduli. c, Proportion of rings in a crystal cluster. d, Geometrical strain. e, Topological strain. f,
Difference between the imposed lateral displacement and maximum contact length. While some quantitative differences can
be observed in the proportion of crystal (c) and shear moduli (b), conveying that the steady state may not be fully settled for
the cycle numbers chosen here, the tendency and evolution remain essentially the same. The choice of the cycles to take into
account is then not a determining factor in analysing the response of ring assemblies.


