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Integrable spin chains with a continuous non-Abelian symmetry, such as the one-dimensional isotropic
Heisenberg model, show superdiffusive transport with little theoretical understanding. Although recent
studies reported a surprising connection to the Kardar-Parisi-Zhang (KPZ) universality class in that case,
this view was most recently questioned by discrepancies in full counting statistics. Here, by combining
extensive numerical simulations of classical and quantum integrable isotropic spin chains with a framework
developed by exact studies of the KPZ class, we characterize various two-point quantities that remain
hitherto unexplored in spin chains, and find full agreement with KPZ scaling laws without adjustable
parameters. This establishes the partial emergence of the KPZ class in integrable isotropic spin chains.
Moreover, we reveal that the KPZ scaling laws are intact in the presence of an energy current, under the
appropriate Galilean boost required by the propagation of spacetime correlation.
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Characterizing transport properties of quantum many-
body systems, in particular, those of integrable systems
with nondiffusive transport, is a long-standing objective
of condensed matter physics. Integrability typically
results in ballistic transport, as successfully described by
the framework of the generalized hydrodynamics [1–3],
but it is faced with challenges when ballistic contribu-
tions are canceled by symmetry or other mechanisms
[4,5]. Paradigmatic is the situation with a continu-
ous non-Abelian symmetry, in particular, the isotropic
Heisenberg spin chain, which was reported to show
superdiffusive transport with characteristic length ξðtÞ ∼
t2=3 [6–9]. Surprisingly, this superdiffusive exponent
was associated with an apparently unrelated universality
class established mainly for classical nonequilibrium
systems, namely, the Kardar-Parisi-Zhang (KPZ) univer-
sality class for fluctuations of growing interfaces and
related phenomena [10]. Key evidence [11,12] was the
precise agreement of the equilibrium two-point spin
correlation function with Prähofer and Spohn’s exact
solution for the KPZ class [13], often denoted by
fKPZð·Þ. On the one hand, this alleged manifestation of
the KPZ class is deemed universal [4,5,14], as confirmed

in various isotropic integrable spin chains, whether quan-
tum [15] or classical [16], and also supported by a few
experimental investigations [17,18]. On the other hand, it
is clear from the symmetry of spins that the magnetization
transfer (integrated spin current) must show a symmetric
distribution, unless the symmetry is explicitly broken by
the initial condition or an external field [19], while for KPZ
the corresponding quantity, namely, the interface height
increment, is intrinsically asymmetric [10]. Furthermore,
recent computational studies [20,21] revealed discrepan-
cies beyond the symmetry difference, notably in the
kurtosis. These findings led the authors to set aside the
possibility that spin transport in such systems may be
described by the KPZ class, instead suggesting the need for
a new universality class [20,21]. After all, all pieces of
evidence for KPZ reported so far have been rather weak,
being the scaling exponents, which are simple rational
numbers such as 2=3, and the agreement with Prähofer and
Spohn’s solution fKPZð·Þ, which has been compared with
arbitrarily fitted scaling coefficients. Serious doubt is cast
on the relevance of the KPZ class in this context, or more
broadly in characterizing transport properties of a class of
quantum many-body systems.
Here we clarify the fate of the KPZ universality in

isotropic integrable spin chains, both classical and quantum.*Contact author: kat@kaztake.org
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First we remark that the deep body of knowledge gained by
mathematical studies on the 1D KPZ class [10] has not been
fully utilized. It dictates, for example, the mutual relation
between scaling coefficients. They contain universal quan-
tifiers, which are lost if treated as free fitting parameters.
Moreover, the Prähofer-Spohn function is not the only two-
point correlator with an exact solution [10]; other two-point
functions, such as the equal-time spatial correlator [22] and
equal-position two-time correlator [23,24] have also been
dealt with. The purpose of the present Letter is to make full
use of these results to carry out a comprehensive test of the
KPZ universality in isotropic integrable spin chains. Our
results on various two-point functions hitherto unexplored
in spin chains reveal that the KPZ class is indeed relevant in
spin chains, yet it describes two-point functions only, hence
the partial emergence of the KPZ class.
We study both classical and quantum integrable iso-

tropic spin chains. For the classical case, we use Krajnik
and Prosen’s model [19,25,26], based on the lattice
Landau-Lifshitz magnet [27], which we shall call the
KPLL model. It is an integrable variant of the lattice
Landau-Lifshitz model defined on a brick-layer space-time
lattice (see Supplemental Material text 1 and Fig. S1 [28]
for the complete definition), which converges to the
Ishimori chain [36]

∂Sj
∂t

¼ Sj × Sj−1
1þ Sj · Sj−1

þ Sj × Sjþ1

1þ Sj · Sjþ1

; ð1Þ

in the continuous time limit [25,26]. For the quantum case,
we study the isotropic Heisenberg chain, which is a
representative integrable model [37] defined by

Ĥ ¼
X
j

Ŝj · Ŝjþ1; ð2Þ

with spin-1=2 operator Ŝj ¼ ðŜxj ; Ŝyj ; ŜzjÞ. In the following,
we use the classical KPLL model to realize large-scale
simulations for inspecting supposedly universal statistical
properties of isotropic integrable spin chains, which are
then confirmed by the quantum Heisenberg simulations.
For the KPLL model, unless otherwise stated, we started
from infinite-temperature equilibrium states and obtained
N ¼ 104 independent realizations with system size
L ¼ 40 000 and the periodic boundary condition, with
time step 0.1. The z component of the spins, SzjðtÞ, is our
magnetization field, denoted by mðx; tÞ with x ¼ j here-
after whenever appropriate. Another quantity of interest is
the integrated spin current, or the magnetization transfer,
hðx; tÞ≡ R

t
0 Jðx; t0Þdt0, with spin current Jðx; tÞ. The mag-

netization transfer hðx; tÞ corresponds to the height incre-
ment of the growing interfaces, which is central in the
studies of the KPZ class.
First we verify KPZ behavior of the KPLL model

through the standard quantities. Figure 1(a) displays the

two-point function C2ðl; tÞ≡ hmðxþ l; tÞmðx; 0Þi,
showing agreement with the Prähofer-Spohn exact solu-
tion fKPZð·Þ. Here the normalized function C̃2ðl; tÞ≡
½ξðtÞ=Ω�C2ðl; tÞ is shown, where Ω≡ R

C2ðl; tÞdl is
conserved as a result of the conservation of the total
magnetization

R
mðx; tÞdx, and ξðtÞ is the correlation

length determined by ð1=ΩÞ R l2C2ðl; tÞdl ¼ σ2ξðtÞ2
with σ2 ≡ R

u2fKPZðuÞdu ≈ 0.51. This correlation length
is confirmed to show the characteristic power law ξðtÞ ∼
t2=3 of the KPZ class [Fig. 1(b)]. We also measure the
variance of the magnetization transfer and find the char-
acteristic KPZ growth, Var½hðx; tÞ� ∼ t2=3 [Fig. 1(c)]. On
the other hand, the skewness is zero and far from the value
for the Baik-Rains distribution [38] expected for the KPZ
stationary state (inset). Although the data shown so far are a
reproduction of known results [19,20], we can scrutinize
nontrivial relationship underlying these quantities.
According to KPZ scaling laws [10,13,39], we have

C2ðl; tÞ ≃
2αt2=3

ξðtÞ2 fKPZ

�
l
ξðtÞ

�
; ð3Þ

Var½hðx; tÞ� ≃ αt2=3Var½BR�; ð4Þ

where Var½BR� ≈ 1.15 is the variance of the Baik-Rains
distribution and α is a coefficient. Since these equations are
not guaranteed to describe spin chains, here we evaluate α
from data of C2ðx; tÞ and Var½hðx; tÞ� independently and
denote them by α1ðtÞ and α2ðtÞ, respectively. Then,

FIG. 1. The two-point function and the magnetization transfer
cumulants for the KPLL model. (a) Rescaled two-point function
C̃2ðl; tÞ ¼ ½ξðtÞ=Ω�C2ðl; tÞ against l=ξðtÞ, compared with the
Prähofer-Spohn solution fKPZð·Þ. (b) Correlation length ξðtÞ.
(c) Variance (main panel) and skewness (inset) of the magneti-
zation transfer h. The dashed line in the inset indicates the
skewness of the Baik-Rains distribution. (d) Ratio of α1ðtÞ [from
Eq. (3)] and α2ðtÞ [from Eq. (4)].
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remarkably, we find α1ðtÞ ¼ α2ðtÞ [Fig. 1(d)], substantiat-
ing the validity of the KPZ scaling laws (3) and (4) in spin
chains. Note that Eq. (4) includes the Baik-Rains variance,
even though the Baik-Rains distribution does not appear in
spin chains.
We further test the validity of KPZ scaling laws through

other two-point quantities. First we study the spatial
correlation of the magnetization transfer:

Csðl; tÞ≡ hhðx; tÞhðxþ l; tÞi − hhðx; tÞi2: ð5Þ

Figure 2(a) shows it in the rescaled units, C̃sðuÞ≡
Csðl; tÞ=αt2=3 against u≡ l=ξðtÞ. For the KPZ class, the
multi-point equal-time height correlation has been charac-
terized intensively and described in terms of a family of
stochastic processes called the Airy processes [22,40–44].
For the stationary state, a process called the Airystat process
has been considered [45] (see also a review [22]), but it
describes the height measured in the absolute frame (say,
h0ðx; tÞ) instead of the height increment hðx; tÞ ¼ h0ðx; tÞ −
h0ðx; 0Þ considered here. We therefore introduce here the
limiting process A0ðuÞ for the height increment hðx; tÞ, in
other words the stationary version of the Airystat process,
and call it the Airy0 process. We evaluate the covariance of
the Airy0 process C0ðuÞ≡ hA0ðuÞA0ð0Þi by numerical
simulations of the totally asymmetric simple exclusion
process (TASEP), a representative model in the KPZ class,
and find it in excellent agreement with the data for the
KPLL model [Fig. 2(a)]. Furthermore, we consider C0ðuÞ

for small u analytically and prove dC0=du ¼ −2 at u ¼ 0
(see Supplemental Material text 2 [28]). This is confirmed
by our data for both the KPLL model and the TASEP [insets
of Fig. 2(a)]. Finally, we also investigate the temporal
correlation of the magnetization transfer

Ctðt1; t2Þ≡ hhðx; t1Þhðx; t2Þi − hhðx; t1Þihhðx; t2Þi: ð6Þ

The results in Fig. 2(b) show excellent agreement with the
exact solution for the KPZ class obtained by Ferrari and
Spohn [23,24]:

Ctðt1; t2Þ
Ctðt2; t2Þ

≃
1

2

�
1þ τ2=3 − ð1 − τÞ2=3�; ð7Þ

with τ≡ t1=t2. Theoretically, Eq. (7) is for t1; t2 → ∞ with
a fixed τ, but the data converge remarkably fast.
The results obtained so far for the classical KPLL model

verified the validity of the KPZ scaling laws in various two-
point quantities. Remarkably, we confirm all these results in
simulations of the quantum Heisenberg model too (Fig. 3)
without any adjustable parameter. This establishes the
universality of the results, encompassing both the quantum
and classical worlds. The details of the simulation and the
results of the quantum model are presented in End Matter.
Now we test the robustness of our findings under

different situations, again using the classical KPLL model.
First, we consider the case with a non-vanishing energy
current. This is particularly tempting in view of the
hydrodynamic description proposed by De Nardis et al.
[46], which predicts that left-moving and right-moving
giant quasiparticles contribute equally to the magnetization,

FIG. 2. Spatial (a) and temporal (b) correlation functions of the
magnetization transfer for the KPLL model. (a) The rescaled
spatial correlator C̃sðuÞ ¼ Csðl; tÞ=αt2=3 (main panel) and its
slope dC̃s=du (left inset) against u ¼ l=ξðtÞ. The dashed lines
show the curves for the KPZ class, obtained by TASEP simu-
lations. The right inset compares the slope dC̃s=du at u ¼ 0 with
our exact result for the KPZ class, dC̃s=du ¼ −2. (b) The rescaled
temporal correlator Ctðt1; t2Þ=Ctðt2; t2Þ against t1=t2, compared
with the Ferrari-Spohn solution [Eq. (7)] for the KPZ class.

FIG. 3. Results for the quantum Heisenberg model, with system
size L ¼ 100 and maximum bond dimension χ ¼ 1600 (see End
Matter for details). (a) Correlation length ξðtÞ and variance of the
magnetization transfer, Var½h�. (b) Ratio α2ðtÞ=α1ðtÞ. See End
Matter for the evaluation of the error bars. (c),(d) Spatial (c) and
temporal (d) correlation functions of the magnetization transfer.
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and this is why the distribution of h becomes symmetric.
Therefore, it is important to clarify what happens if the left-
right symmetry is broken, e.g., by the presence of a finite
energy current. We prepared such an initial condition by
Monte Carlo sampling, using the statistical weight ∝ e−λJE
with total energy current JE ≡ −

P
j Sj · ðSjþ1 × Sjþ2Þ

[47] and λ ¼ −1. Thereby, we indeed realize a situation
where the energy current reaches a constant finite value
after a short transient [Fig. 4(a) inset].
Figure 4(a) shows the two-point function C̃2ðl; tÞ ¼

½ξðtÞ=Ω�C2ðl; tÞ in this case. Interestingly, now we find the
peak position of the correlation function moving at a
constant velocity, lpeak ¼ vpeakt with vpeak ¼ 0.5523

[Figs. 4(b) and 4(c)]. Apart from this, the form of the
two-point function turns out to be unchanged, i.e., it is the
Prähofer-Spohn function fKPZð·Þ [Fig. 4(d)] with correla-
tion length growing as ξðtÞ ∼ t2=3 [Fig. 4(e)]. Therefore, the
KPZ physics remains intact in the presence of a finite
energy current. The propagation of the space-time corre-
lation revealed in Figs. 4(a)–4(c) is analogous to the case of
growing tilted interfaces [50,51] and nonlinear fluctuating
hydrodynamics for unharmonic chains [52]. An important
lesson from these studies is that one should measure the
magnetization transfer hðx; tÞ in the frame comoving with
the space-time correlator, which amounts to the following
expression:

hðx; tÞ≡
Z

t

0

Jðx; t0Þdt0 −
Z

x

x−vt
mðx0; 0Þdx0; ð8Þ

with v ¼ vpeak. With this appropriate definition of the
magnetization transfer, we indeed confirm the KPZ growth
of the variance, Eq. (4) [Fig. 4(f) red squares], whereas the
naïve definition hðx; tÞ ¼ R

t
0 Jðx; t0Þdt0 fails to capture the

KPZ exponent (blue circles). On the other hand, even with
the definition (8) without left-right symmetry, we do not
find any indication of asymmetric distribution, as evi-
denced by vanishing skewness [Fig. 4(g)]. The value of the
kurtosis also remains far from that of the Baik-Rains
distribution [Fig. 4(h)], just like the case without energy
current [20,21]. To summarize, the presence of a finite
energy current only necessitates considering the comoving
frame; otherwise, it seems to have no effect on relevant
statistical quantities, as long as they are measured in the
comoving frame.
Finally, we study the effect of the initial condition.

Universal statistical properties of the authentic KPZ class
are known to depend on the initial condition, the three
representative cases being the domain wall (curved inter-
face), flat, and stationary initial conditions [10]. It is
important to assess whether KPZ scaling laws for nonsta-
tionary cases can describe spin chains under the corre-
sponding, nonequilibrium settings. For the domain wall
initial condition, recent simulations suggested that KPZmay
be observed only for finite times, being eventually replaced
by the diffusive scaling [19]. This is argued to result from
the violation of the SU(2) symmetry, due to the chemical
potential μ used to prepare each domain of biased spins [53].
Compared to this, the fate of the flat initial condition is not
clear and has not been studied to our knowledge, even if
some recent simulations of quantum spin chains hint that
KPZ behavior is also visible when starting from nonsta-
tionary states [54].
We realize a flat initial condition, by drawing each spin

Sjð0Þ from infinite-temperature equilibrium distribution
with a space-dependent vectorial chemical potential μj,
ρðSjÞ ¼ ðjμjj=4π sinh jμjjÞeμj·Sj . The chemical potential is
determined as follows: (i) μ1 ¼ 0, (ii) μj≥2 ¼ −μStotj−1=jStotj−1j

FIG. 4. Results for KPLL with a finite energy current. (a) Two-
point function C2ðl; tÞ=t2=3 against l=ξðtÞ for different times,
t ¼ 3000; 8000; 15 000; 23 000; 32 000 from left to right. Data
smoothed by the locally weighted scatterplot smoothing method
are displayed. Inset: total energy current JEðtÞ. (b),(c) The
location and the velocity of the peak of C2ðl; tÞ, lpeakðtÞ and
vpeak, respectively. The dashed line in (b) shows lpeakðtÞ ¼ vt
with v ¼ 0.5523, wrapped by the periodic boundary. (d) Rescaled
two-point function C̃2ðl; tÞ centered at l ¼ lpeakðtÞ [symbols,
same colors as (a)], compared with the Prähofer-Spohn solution
fKPZð·Þ (dashed line). (e) Correlation length ξðtÞ. The black
dots are the data for the case without energy current, shown in
Fig. 1(b). (f) Variance of the magnetization transfer hðx; tÞ,
measured in the original and comoving frames (blue circles
and red squares, respectively). (g),(h) Skewness and kurtosis of
the magnetization transfer hðx; tÞ in the comoving frame. The
values for the Baik-Rains distribution are 0.359 and 0.289,
respectively [49], which are far from the data.
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with Stotj−1 ≡
Pj−1

j0¼1
Sj0 ð0Þ, and μ > 0 [55]. This amounts

to generating an initial height profile h0ðx; 0Þ≡
−P

0≤j<x S
z
jð0Þ that looks like a trajectory of an Ornstein-

Uhlenbeck process [Fig. 5(a) bottom curve] instead of a
Brownian trajectory for the equilibrium case μ ¼ 0. For
KPZ interfaces, we demonstrate with TASEP that such
initial conditions result asymptotically in the flat KPZ
statistics [56], through a dynamical crossover from the
stationary statistics (the Baik-Rains distribution) to the flat
one (the GOE Tracy-Widom distribution) [57] without
changing the scaling Var½h� ∼ t2=3 (Fig. S2 [28]). In con-
trast, for the KPLL magnet, we find completely different
behavior for μ > 0, showing crossover from the KPZ
scaling t2=3 to the diffusive one t1=2 [Fig. 5(b)]. Close
scrutiny reveals that this crossover takes place at time scale
μ−3 [Fig. 5(b) inset], in agreement with anomalous relax-
ation discussed in Ref. [53]. This indicates that the local
violation of the isotropy [SU(2) for quantum spins] is
sufficient for KPZ to break down in spin chains.
In summary, using the integrable isotropic spin chains,

both classical and quantum, we carried out quantitative
tests of KPZ scaling laws for various two-point quantities
that have not been characterized for spin chains so far, and
found precise agreement in all of them (Table I).
Nevertheless, the KPZ scaling laws seem to not describe
higher-order quantities, as evidenced by earlier studies
[20,21]. Therefore, as the main conclusion of the Letter, the
strict KPZ class rules only a subset of statistical properties

of isotropic integrable spin chains (and other cases with a
continuous non-Abelian symmetry [14]). It is of primary
importance to clarify the underlying principles of such
partial emergence of the KPZ class. The coupled Burgers
equations in Ref. [46] showed how KPZ two-point quan-
tities can emerge out of symmetric one-point distributions,
but the kurtosis remains unexplained. It is an open question
if one can extend the theory to make it fully consistent, e.g.,
by introducing a larger number of hydrodynamic modes.
Our finding on the robustness of the KPZ scaling in the
presence of energy current, as well as its breakdown by the
local violation of isotropy, may also be hints for probing
this mystery, which hangs over such simple quantummany-
body systems as the isotropic Heisenberg spin chain.
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End Matter

Appendix A: Quantum model simulation—To obtain
the data shown in Fig. 3, we numerically evaluate
C2ðl; tÞ, Csðl; tÞ and Ctðl; tÞ for the infinite
temperature equilibrium state. These quantities are
defined for the quantum model as follows: C2ðl; tÞ ≡
hŜz0ŜzlðtÞi, Csðl; tÞ ≡ hΔŜ0ðtÞΔŜlðtÞi − hΔŜlðtÞi2,
and Ctðt1; t2Þ≡ hΔŜ0ðt1ÞΔŜ0ðt2Þi − hΔŜ0ðt1ÞihΔŜ0ðt2Þi
where hÔi ≡ Tr½Ô�=2L, Ŝαj ðtÞ ≡ ÛtŜ

α
j Û

†
t ðα ¼ x; y; zÞ

with Ût ≡ e−iĤt, ĴjðtÞ≡ ŜxjðtÞŜyjþ1ðtÞ − ŜyjðtÞŜxjþ1ðtÞ and

ΔŜjðtÞ≡ R
t
0 Ĵjðt0Þdt0 represents the local spin current

and magnetization transfer at the jth site, respectively.
Here, the site index 0 represents the (L=2)th site
counted from the left boundary and is nearly at the
center of the system, where L is the total number of
sites. The index j runs from −ðL=2Þ þ 1 to L=2. In the
quantum context, the definition of charge transfer must
come with a prescription for the appropriate time
ordering of the operator ΔŜjðtÞ as the current operators
at different times do not commute with each other; see
Refs. [58,59]. However, for simplicity, our correlation

functions Csðl; tÞ and Ctðt1; t2Þ are not defined with
such a time ordering, even though these quantities are
still physically observable in principle, as we argue in
Supplemental Material text 3 [28]. Testing the KPZ
scaling for correlation functions with the appropriate time
ordering to reproduce charge transfer is an important
problem left for future studies.
To obtain the time-evolved operators and their expect-

ation values, we use the time-evolving block decimation
(TEBD) method [60] for matrix product operators, with
time step Δt ¼ 0.05 and maximum bond dimension
χ ¼ 400; 800; 1200; 1600, implemented by ITensor [61].
We consider L ¼ 100 and the open boundary condition
for this simulation. For Csðl; tÞ and Ctðt1; t2Þ, we first
obtain the current-current correlation function FlðtÞ≡
hĴlð0ÞÛtĴ0ð0ÞÛ†

t i using the TEBD and then compute
numerical integrals, such as hΔŜ0ðtÞΔŜlðtÞi ¼R
t
0 dt

0 R t
0 dt

00Flðt0 − t00Þ. The time integral is evaluated with
a large time step 20Δt.
For simulations of such quantum models, it is crucial to

deal with truncation error due to the finite bond dimension
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χ. To understand the effect of this error, we have performed
simulations with different χ and compared them. The
results described in the following indicate that a large
value of χ is needed for quantitative verification of the KPZ
scaling functions, larger than that needed for the exponents.
While most of the data shown in Fig. 3 are well converged
with respect to χ within numerical accuracy, α1ðtÞ is not,
and we have systematically evaluated the error bars as
explained below. Note that the Trotter error is not the
dominant source of error in the present study.

Appendix B: Numerical results for the quantum
model—Let us start with the quantities related to C2ðl; tÞ.
Figure 6(a) shows ΩðtÞ≡P

l C2ðl; tÞ, which should be
conserved by the Uð1Þ symmetry of the Hamiltonian
[Eq. (2)]. However, because of the truncation error due
to finite bond dimension, ΩðtÞ starts to deviate at long
times. Indeed, we find that the deviation becomes
smaller with increasing χ. With χ ¼ 1600 used for the
main results shown in Fig. 3, the deviation remained
within 0.8% of the initial value, at the largest time
inspected in this work (t ¼ 50). Next, we evaluate the
correlation length ξðtÞ≡ f½1=σ2ΩðtÞ�Pl l

2C2ðl; tÞg1=2
with σ2≈0.51. The data exhibit the power law ξðtÞ ∼
t2=3 [Fig. 6(b)] as expected from the KPZ scaling.
Using these results, we plot the rescaled two-point

function C̃2ðl; tÞ ¼ ½ξðtÞ=ΩðtÞ�C2ðl; tÞ in Fig. 6(c). The
data are in good agreement with the Prähofer-Spohn exact
solution fKPZðuÞ with u ¼ l=ξðtÞ, confirming the earlier
finding in Ref. [11] without adjustable parameters.
However, to evaluate the parameter α1ðtÞ therefrom
[Eq. (3) with α ¼ α1ðtÞ], we must deal with the slight
deviation from fKPZðuÞ visible even for the largest χ we
used. To this end, in the inset of Fig. 6(c), we plot
α̃1ðl; tÞ≡ ξðtÞ2C2ðl; tÞ=f2t2=3fKPZ½l=ξðtÞ�g. According
to Eq. (3), this quantity is expected to take a constant
value α in the long-time limit. Indeed, as t increases,
α̃1ðl; tÞ develops a plateau. The deviation from the plateau
gives a measure of the error in the estimate α1ðtÞ.
Specifically, we measure αmax

1 ðtÞ≡maxuα̃1ðu; tÞ and
αmin
1 ðtÞ≡minjuj<1α̃1ðu; tÞ [Fig. 6(d)] and use f½αmax

1 ðtÞ þ
αmin
1 ðtÞ�=2g as the estimate of α1ðtÞ and αmax

1 ðtÞ − αmin
1 ðtÞ

as its error bar. The results in Fig. 6(d) indeed show that
α1ðtÞ tends to converge to a constant in the long-time and
large-χ limit.
Next, we consider the quantities related to the magneti-

zation transfer. First, its variance exhibits the KPZ scaling
law, Var½hðx; tÞ� ∼ t2=3 [Fig. 6(e) inset]. From this, we
evaluate α2ðtÞ≡ Var½hð0; tÞ�=ðt2=3Var½BR�Þ in Fig. 6(e),
where the data converge to a constant value in the long-
time limit. The KPZ scaling laws predict α1ðtÞ ¼ α2ðtÞ ¼ a
constant α [Eqs. (3) and (4)]. This is confirmed in Fig. 6(f),
where the ratio α2ðtÞ=α1ðtÞ approaches one in the long-
time and large-χ limit. Finally, we plot the spatial and
temporal correlation functions, Csðl; tÞ and Ctðt1; t2Þ,
respectively, in the rescaled units in Figs. 6(g) and 6(h).
They converge remarkably with increasing χ and show
good agreement with the Airy0 covariance C0ðuÞ and the
Ferrari-Spohn exact solution (6), respectively, without
adjustable parameters. These results provide strong evi-
dence that the KPZ scaling laws for the two-point
quantities are valid in the quantum model too.

FIG. 6. Detailed results for the quantum Heisenberg model
(system size L ¼ 100 and open boundary condition). All panels
except the inset of (c) show the χ dependence of ΩðtÞ (a), ξðtÞ
(b), C̃2ðl; tÞ (c), αmin

1 ðtÞ and αmax
1 ðtÞ (d), α2ðtÞ (e), Var½h� [(e)

inset], α2ðtÞ=α1ðtÞ (f), Csðl; tÞ (g), and Ctðt1; t2Þ (h), where χ
denotes the maximum bond dimension in the TEBD simulation.
The same symbols are used in these panels as indicated in the
legend of (a). The error bars in (f) are given by the range
½α2ðtÞ=αmax

1 ðtÞ; α2ðtÞ=αmin
1 ðtÞ�. The dashed lines in (c),(g),(h) are

the Prähofer-Spohn solution fKPZðuÞ, the Airy0 covariance C0ðuÞ,
and the Ferrari-Spohn solution (7), respectively. The inset of
(c) shows the time dependence of α̃1ðl; tÞ with χ ¼ 1600.
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