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Recently, very robust universal properties have been shown to arise in one-dimensional growth processes
with local stochastic rules, leading to the Kardar-Parisi-Zhang (KPZ) universality class. Yet it has remained
essentially unknown how fluctuations in these systems correlate at different times. Here, we derive
quantitative predictions for the universal form of the two-time aging dynamics of growing interfaces and we
show from first principles the breaking of ergodicity that the KPZ time evolution exhibits. We provide
corroborating experimental observations on a turbulent liquid crystal system, as well as a numerical
simulation of the Eden model, and we demonstrate the universality of our predictions. These results may
give insight into memory effects in a broader class of far-from-equilibrium systems.
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Introduction.—Nonequilibrium dynamics is ubiquitous
in nature, and takes diverse forms, such as avalanche
motion in magnets and vortex lines [1,2], ultraslow
relaxation in glasses [3,4], unitary evolution towards
thermalization in isolated quantum systems [5], coarsening
in phase ordering kinetics [6], and flocking in living matter
[7]. Prominent examples are growth phenomena, which
abound in physics [8–12], biology [8,13,14], and beyond
[15]. As some of these systems try to reach local equilib-
rium or stationarity, a great variety of behaviors can occur,
such as aging dynamics and memory of past evolution
[1,4,6,16]. How universal and generic these behaviors are is
a fundamental question [16].
One important example of growth arises when a stable

phase of a generic system expands into a nonstable (or
metastable) one, in the presence of noise. While spreading,
the interface separating the two phases develops many
nontrivial geometric and statistical features. A universal
behavior then emerges, unifying many growth phenomena
into a few universality classes, irrespective of their micro-
scopic details. The most generic one, for local growth rules,
is the celebrated Kardar-Parisi-Zhang (KPZ) class, now
substantiated by many experimental examples, such as
growing turbulence of a liquid crystal [9–11], propagating
chemical fronts [15], paper combustion [12], and bacteria
colony growth [13]. For one-dimensional interfaces grow-
ing in a plane, as studied in many experiments, it is
characterized by the following KPZ equation [17]:

∂thðx; tÞ ¼ ν∂2
xhðx; tÞ þ

λ0
2
½∂xhðx; tÞ�2 þ

ffiffiffiffi
D

p
ηðx; tÞ; ð1Þ

which describes the motion of an interface of height hðx; tÞ
at point x ∈ R at time t, driven by a unit space-time white
noise ηðx; tÞ. Recently, this problem became an outstanding
example where a wealth of universal statistical properties
can be solved exactly, from the KPZ equation and related

lattice models [18–28]. At large time, the height evolves as
hð0; tÞ≃ v∞tþ ðΓtÞ1=3 ~ht with system-dependent parame-
ters v∞, Γ, and a stochastic variable ~ht that carries universal
information of the fluctuations. Remarkably, in the limit
t → ∞, ~ht follows one of a few non-Gaussian universal
distributions, selected only by the global geometric shape
of the initial condition hðx; t ¼ 0Þ: in particular, the GUE
Tracy-Widom distribution [29] F2ðσÞ, when hðx; 0Þ is
narrowly curved [droplet initial condition [20–23], see
Fig. 1(a)] and its GOE variant F1ðσÞ, when hðx; 0Þ is a
flat surface [24]. These two distributions also describe the
fluctuations of the largest eigenvalue of a Gaussian random
matrix drawn from the unitary (GUE) or orthogonal (GOE)
ensembles, revealing a striking connection to the theory of
random matrices [19,30]. An additional universal distribu-
tion, the Baik-Rains distribution [18], characterizes the
stationary state of the growth and can be reached [25] by
choosing hðx; 0Þ as Brownian motion in x. This geometry-
dependent universality was tested and confirmed exper-
imentally, in studies on growing interfaces of liquid-crystal
turbulence [9–11]. The experiments also allowed us to
investigate time-correlation properties that were inacces-
sible by analytical approaches. This revealed an anomalous
memory effect for the droplet case [11], by which fluctua-
tions in h keep indefinite memory of the past, in contrast
to the naive expectation that memory is eventually lost.
This persistence of memory, signaling ergodicity breaking
in the time evolution of the droplet case, is quantified by the
long time limit of the covariance that remains strictly
positive [11,31] limΔ→∞ limt1→∞ C(t1; t1ð1þ ΔÞ) > 0,
where Cðt1; t2Þ ¼ cov½hð0; t1Þ; hð0; t2Þ�. Theoretically,
however, such two-time quantities remained so far ana-
lytically intractable, except for a few exceptional results
[32,33] that however are too involved to produce practical
predictions. Since experiments and simulations are always
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confronted with relatively limited ranges of time t1 and the
ratio Δ, while the suspected ergodicity breaking can only
be addressed in the limits t1 → ∞ then Δ → ∞, a theory
that can directly deal with these asymptotic limits, and also
make a bridge to finite-time observations through predic-
tions, is a crucial missing facet of the problem. Here, we
provide the first theoretical results for the correlations at
two different times in the infinite time limit of the KPZ
equation, and we analytically prove the persistence of
correlations that was previously observed in finite-time
experiments [11]. This shows that a fraction of the
fluctuations of the droplet KPZ interface, mostly the ones
with large and positive rescaled height, maintain their
configurations stable during the time evolution, as also
is made clear below from a dual directed polymer picture.
This translates into an ergodicity breaking in all the growth
processes with the droplet initial condition.
Two-time JPDF.—We address the problem by deriving

an analytical result for the joint probability density function
(JPDF) of the height h at two different times t1 and
t2 ¼ ð1þ ΔÞt1, with the droplet initial condition, see
Fig. 1. It is valid in a wide range of parameters and agrees
remarkably well with experimental and numerical data (see
below). We focus on the limit t1, t2 → ∞ with their ratio
t2=t2 ¼ 1þ Δ kept finite, so that the obtained correlations
are expected to be universal within the KPZ class. More
precisely, we compute the JPDF for the rescaled height

~h1 ¼ ~ht1 ¼ ðhð0; t1Þ − v∞t1Þ=ðΓt1Þ1=3 and the rescaled

two-time height difference ~h12 ¼ ðhð0; t2Þ − hð0; t1Þ−
v∞t1ΔÞ=ðΓt1ΔÞ1=3. It is defined as

PΔðσ1; σÞdσ1dσ ¼ lim
t1→∞

fProbðσ1 ≤ ~h1 ≤ σ1 þ dσ1;

σ ≤ ~h12 ≤ σ þ dσÞg ð2Þ
and quantifies howmuchmemory of the configuration at the
earlier time t1 is retained at the later time t2, as illustrated in
Fig. 1(b). It allows us to calculate the conditional cumulants
h ~hn12ic~h1>σ1c , i.e., the cumulants of the variable ~h12 condi-

tioned to realizations with ~h1 larger than some fixed value
σ1c. It also allows us to predict the rescaled covariance under
the same conditioning, defined as

CΔ;σ1c ¼
Cðt1; t2Þ ~h1>σ1c
Cðt1; t1Þ ~h1>σ1c

¼ 1þ Δ1=3
cov½ ~h1; ~h12� ~h1>σ1c

h ~h21ic~h1>σ1c
: ð3Þ

These quantities, computed here analytically for the first
time, allow us to probe memory effects and quantify the
breaking of ergodicity in the dynamics. In particular, Eq. (3)
quantifies how much memory of the fluctuations with
rescaled amplitudes larger than σ1c is kept at later times
and it recovers the full two-time covariance Cðt1; t2Þ in the
limit σ1c ¼ −∞.
Solution via the directed polymer.—To derive a numeri-

cally tractable expression for the JPDF (2), we exploit the
fact [34] that the KPZ equation is equivalent to a (statistical
mechanics) problem of space-time paths (i.e., “growth
histories”) in a random potential, which is further mapped
into a quantum problem of bosons (see Fig. 2). From now
on we use the scales x� ¼ ð2νÞ3=Dλ20, t� ¼ ð2ð2νÞ5Þ=
ðD2λ40Þ, h� ¼ ð2νÞ=λ0 as units of space, time, and height,
respectively. In other words, x=x�, t=t�, h=h� are simply
denoted by x, t, h, respectively (this amounts to setting
ν ¼ 1, λ0 ¼ 2, andD ¼ 2 in the KPZ equation, which leads
to Γ ¼ 1). In these units, from Eq. (1), the function
Zðx; tÞ ¼ ehðx;tÞ satisfies a linear stochastic equation; thus,
it can be written as a sum over space-time paths and can be
interpreted as the canonical partition sum of a directed
polymer (DP) with endpoints (0, 0) and ðx; tÞ in a unit white
noise random potential −

ffiffiffi
2

p
η [see Fig. 2(a)]

Zðx; tjy; 0Þ ¼
Z

xðtÞ¼x

xð0Þ¼0

Dxe−
R

t

0
dτ½1

4
ðdx=dτÞ2− ffiffi

2
p

η(xðτÞ;τ)�:

The function PΔðσ1; σÞ maps to the JPDF of the free
energies of two DPs starting both in (0, 0) but ending in
ð0; t1Þ and ð0; t2 ¼ t1ð1þ ΔÞÞ: in Fig. 2(a) is shown a
typical configuration of these two paths, which tend to visit
the lower valleys of the potential (bluer regions), i.e., faster
growth regions, compatible with their boundary conditions
and kinetic energies, which tend to minimize their length.
The JPDF (2) is obtained [35] from the joint integer
moments hZð0; t1Þn1Zð0; t2Þn2i, averaged over realizations
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FIG. 1. Sketch of the KPZ time evolution: the two rough lines
show the expanding KPZ height, describing the edge of a
growing circular region. Note that, for isotropic systems, the
local radius corresponds to hð0; tÞ in any angular direction.
(a) The fluctuations of the interface at time t2 are described by the
GUE Tracy-Widom distribution F0

2ð ~h2Þ with the rescaled height
~h2 ¼ ~ht2 ¼ ðhð0; t2Þ − v∞t2Þ=ðΓt2Þ1=3. (b) Given the fluctuations
of the height at a previous time t1 ¼ t2ð1þ ΔÞ−1 along the same
angular direction (black arrow), the two-time conditional prob-
ability density pð ~h2j ~h1Þ (red line) measures the probability of
observing a fluctuation value ~h2 at time t2, given the value of ~h1 at
the previous time t1 (the inset shows the conditional distribution
for ~h1 ¼ 0).
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of η. They are given by the quantum mechanical amplitude
of the following process [see Fig. 2(b)]: n1 þ n2 bosons
with a pairwise attractive potential evolve from x ¼ 0
in imaginary time up to time t1. At t ¼ t1, n1 of
them are annihilated at x ¼ 0, while the other n2 keep
evolving up to t ¼ t1ð1þ ΔÞ, at which they are all finally
destroyed at x ¼ 0 [Eq. (S3) in Ref. [35]]. Their
Hamiltonian is the Lieb-Liniger Hamiltonian with attrac-
tive interaction

HðnÞ
LL ¼ −

Xn
j¼1

∂2
xj − 2

Xn
i<j

δðxi − xjÞ −
n
12

; ð4Þ

extensively studied recently in the context of integrable out-
of-equilibrium dynamics [38–40]. Integrability of this dual
quantum model allows us to derive an analytical expression

for PΔðσ1; σÞ, in the form PΔðσ1; σÞ ¼ Pð1Þ
Δ ðσ1; σÞ½1þ

Oðe−ð4=3Þσ3=21 Þ� with Pð1Þ
Δ ðσ1; σÞ exactly determined in this

work [35]. It is written as a trace of kernels acting onR × R:

Pð1Þ
Δ ðσ1; σÞ ¼ ð∂σ1∂σ − Δ−1=3∂2

σÞ
× fF2ðσÞTr½Δ1=3ΠσKΔ

σ1ΠσðI − ΠσKAiΠσÞ−1
− Πσ1KAi�g; ð5Þ

where Πσ projects on the interval ½σ;þ∞� ∈ R, I is the
identity operator, and ∂σ denotes partial derivatives.
The expression involves the well-known Airy kernel
KAiðr; r0Þ ¼

R
∞
0 dzAiðrþ zÞAiðr0 þ zÞ from random

matrix theory [29] and a novel kernel

KΔ
σ1ðr; r0Þ ¼

Z
∞

0

dz1dz2Aið−z1 þ rÞAið−z2 þ r0Þ

× KAiðz1Δ1=3 þ σ1; z2Δ1=3 þ σ1Þ: ð6Þ
The formula (5) can be easily evaluated numerically for any
value of σ1 inside its expected validity range (specifically
σ1 ≳ −1.5). This allows us to perform direct tests of the
theoretical predictions, both experimentally and numeri-
cally, without any fitting parameters. Experimentally, we
study growing interfaces of electrically driven liquid-crystal

FIG. 2. (a) Representation of the mapping from the height
hðx; tÞ in the KPZ equation (1) to the free energy of a directed
polymer in a random potential. Shown here is a typical configu-
ration of two polymers, which tend to visit the lower valleys of
the potential (bluer regions). The two paths tend to overlap in the
time interval ½0; t1�, accounting for ergodicity breaking (see text).
(b) Mapping (via the replica method) to a quantum mechanical
transition amplitude of attractive one-dimensional bosons.
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FIG. 3. Test of the theoretical prediction for the conditional mean h ~h12ic~h1>σ1c
and variance h ~h212ic~h1>σ1c

with the liquid-crystal experiment
(a) and the Eden-model simulation (b). Here, the results for σ1c ¼ −1 and 0 are shown (see also Fig. S3 in Ref. [35] for σ1c ¼ −1.5). Data at
different t1 are shown in different colors and symbols. The regions of overlapped data indicate the asymptoticΔ dependence,which is found
to be in excellent agreement with the theoretical predictions (black lines), without any fitting parameter. For comparison, the theoretical
curves with another value of σ1c are shown by gray thin lines. The error bars indicate the standard errors, and the shaded areas show the
uncertainty due to the estimation error in v∞ andΓ. To reduce the effect of finite-time corrections, herewe used such realizations that satisfy
~h1 > ~h1c with Prob½ ~h1 ≥ ~h1c� ¼ 1 − F2ðσ1cÞ. The deviation of the nonoverlapped data is due to finite-time corrections, which decay as t−11 ,
see Fig. S4 in Ref. [35]. Note that the asymptotic theoretical curves converge to the Baik-Rains values (mean 0, variance 1.1504) atΔ → 0

and the GUE Tracy-Widom values (mean −1.7711, variance 0.8132, indicated in the figures by the green bars) at Δ → ∞.
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turbulence, which were previously shown to be in the KPZ
class [9–11] (see Refs. [11,35] for details). We use 955
interfaces, generated froma turbulent nucleus (droplet initial
condition) triggered by a laser, for which the nonuniversal
parameters v∞ and Γ were determined with high precision
[11] and used to obtain the rescaled variables. Then we
measure the conditional cumulants h ~hn12ic~h1>σ1c with different
t1 [Fig. 3(a)]. Their asymptotic forms, which are indicated
by the overlapping of data sets, are found to show an
excellent agreement with the theoretical predictions
[Fig. 3(a) and Fig. S3(a) in Ref. [35]]. For a further test,
we carry out numerical simulations of the off-lattice Eden
model [41] (5000 realizations; see Ref. [35] for details) and
the same quality of agreement is obtained [Fig. 3(b) and
Fig. S3(b) in Ref. [35]]. We also measure the conditional
covariance (3) and find agreement both experimentally and
numerically (Fig. 4). This indicates that our predictions
describe the universal time correlation of the droplet KPZ
interfaces. Moreover, our theory shows analytically for the
first time the crossover between different probability dis-
tributions for ~h12, asΔ varies (see Fig. 5). In the limit of close
times, t2=t1 → 1þ, the JPDF (5) factorizes and ~h1, ~h12
become two independent random variables following,
respectively, the GUE Tracy-Widom and Baik-Rains dis-
tributions. The emergence of the Baik-Rains distribution is
direct evidence of the approach to the KPZ stationary state
when t2=t1 → 1þ [31]. As time separation increases, a
nontrivial aging form develops and for Δ → ∞ the joint
statistics factorizes into the product of two GUE Tracy-
Widom distributions. The next order correction, of order
OðΔ−1=3Þ, gives access to the asymptotic value of the
persistent correlation CΔ→∞;σ1c : as σ1c decreases from
þ∞ to −∞, i.e., the unconditioned case, it is predicted to
decrease from 1 to a strictly positive value estimated to be
≈0.6 [35], which is consistent with our numerical data
[Fig. 4(c), purple stars].
The directed polymer or growth-history path representa-

tion enlightens this ergodicity breaking phenomenon. As

illustrated in Fig. 2, the two polymers tend to visit the same
minima of the random potential thus sharing a finite fraction,
i.e., the overlap 0 < q < 1, of their paths (growth histories)
in the time interval ½0; t1�. Indeed, in the large time limit it is
known that the DP partition sum from (0,0) to ðx; tÞ is
dominated by the path between these two points, which
minimize theDP energy. Since two optimal paths in the same
potential necessarily coincide once theymeet, and since both
polymers must pass through (0, 0), a finite mean overlap q is
expected. This effect thus combines an energetic and a
geometric origin and translates into a finite two-time corre-
lation even in the limit t2 ≫ t1. Our theory further quantifies
the energetic or height level aspect: as σ1c is increased, noise
realizations with large and positive height fluctuations are
selected in the interval 0 ≤ t ≤ t1. These correspond to
realizations of the random potential deeper than average;
therefore, the shared fraction q of the path of the two
polymers approaches unity, and thememory becomesperfect
CΔ→∞;σ1c → 1. This is consistent with the experimental and
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numerical observation (Fig. 4). Note that, interestingly
enough, also the negative height fluctuations can lead to a
finite mean overlap q, since the DP tends to minimize locally
its energy even in a higher than average potential.
Conclusions.—In summary, our results represent the first

analytical theoretical predictions on the universal aging
form for the two-time correlations of the KPZ equation (1)
that remarkably fit experimental and numerical data. It
therefore gives a quantitative prediction for the crossover of
the distribution of the fluctuations ~h12 to the stationary state
(i.e., the Baik-Rains distribution) as t2=t1 → 1þ, and
confirms for the first time the breaking of ergodicity in
the KPZ time evolution from the droplet initial condition.
Both are expected to be universal properties shared by all
growth processes in the KPZ class. This universality in
multitime correlations, accompanied with ergodicity break-
ing, could be explored in a broader class of growth problems
both within and beyond the KPZ class [42]. In expanding
geometries we expect similar persistence of memory when
the spatial scale of dynamical correlations, x ∼ tζ1 (ζ ¼ 2=3
for KPZ), grows slower than the expanding substrate radius
(here ∼t1). It should also be relevant for other nonequili-
brium systems, such as driven Bose-Einstein condensates
[43] and genetic segregation in expanding bacterial colonies
[14], both shown to relate to KPZ.
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