Official web site of Takeuchi Lab, Univ. Tokyo

Seminars

If you wish to receive our seminar announcements, contact Takeuchi (kat _at_ kaztake.org) to join our mailing list. You can also receive the announcements via Statphys mailing list and seminar@complex.

高分子ゲルにおける負のエネルギー弾性

Speaker: 作道 直幸 氏 (東京大学)
Date : Mar. 25 (Thu), 10:30-12:00
Place : online

ゴムや高分子ゲルは、鎖状高分子の(永続的な)三次元網目構造からなるやわらかい物質である。この内、大量の溶媒を含むものを高分子ゲル、含まないものをゴムという。熱力学や統計力学の学部講義や教科書において、ゴムの弾性は熱力学第二法則に由来する「エントロピー的な力」の代表例として登場する [1,2]。現実のゴムの弾性において「エントロピー的な力」が支配的であることは、体積一定の条件下における、ずり弾性率(G)の絶対温度(T) 依存性の測定から確かめられる。なぜなら、熱力学の一般論から、エントロピー変化由来の弾性(エントロピー弾性)が、TG'(T)となるからである[1,3,4]。天然ゴムや合成ゴムにおいては、それらの弾性がほとんどエントロピー変化由来であることが実験的に確かめられている [3,4]。一方、高分子ゲルにおいては、実験的検証なしに、その弾性がエントロピー変化由来であると仮定して、ゴム弾性論が慣習的に使用されてきた [5]。

本研究は、高分子ゲルにおいて、この仮定が誤りであることを発見した [6]。高分子ゲルは、エントロピー弾性に加えて、内部エネルギー変化由来の「負のエネルギー弾性」を持ち、その合計で弾性が決まる。我々は、50種類以上の相異なる網目構造を持つゲルを作り分けたが、その全てに無視できないほど大きな負のエネルギー弾性が存在した。さらに、負のエネルギー弾性には、現象論的な支配法則があることも明らかになった。ゲルの含む溶媒を減らす(ゴムに近づける)と、負のエネルギー弾性はゼロに近づくため、ゴム弾性の実験結果とも整合的である。逆に言えば、溶媒由来の「負のエネルギー弾性」が、ゴム弾性とゲル弾性の本質的な違いである。セミナーでは、時間が許せば、ゲルの浸透圧における普遍法則 [7] についても軽く触れる。二つの研究 [6,7] を合わせると、高分子ゲルの「完全な熱力学関数」は比較的シンプルな構造を持つことがわかる。

[1] 前野昌弘『よくわかる熱力学』(東京図書, 2020) 10.5節
[2] 田崎晴明『統計力学1』(培風館, 2008) 5.6.4節
[3] 久保亮五『ゴム弾性論』(河出書房1947、裳華房1996)
[4] P.J.フローリ『高分子化学(上・下)』(丸善1955)
[5] 例えば、M. Zhong, et al., Science (2016)
  https://doi.org/10.1126/science.aag0184
[6] Yoshikawa, Sakumichi, Chung, Sakai, PRX (2021)
  https://doi.org/10.1103/PhysRevX.11.011045
[7] Yasuda, Sakumichi, Chung, Sakai, PRL (2020)
  https://doi.org/10.1103/PhysRevLett.125.267801

Dynamic self-organization and collective chemotaxis of migrating cells through contact communication

Speaker: Dr. Tetsuya Hiraiwa (Mechanobiology Institute, National University of Singapore)
Date : Feb. 9 (Tue), 15:00-16:30
Place : online

Migration is a ubiquitous kind of eukaryotic cell behavior. Some cells migrate around on a substrate according to intracellular signals that localize at their front or back, even without extracellular cues. In light of this, we theoretically investigated single eukaryotic cell migration with such intrinsic polarity [1,2] and recently applied the theory to the multicellular case where cells communicate with each other [3,4,5].
In this talk, I will address what forms of multicellular dynamic patterns, or dynamic self-organization, can be formed through intercellular contact communication of migrating cells. I plan to explain the concept and the results of our numerical simulations based on an individual cell-based model in which migrating cells perform contact following and inhibition/attraction of locomotion [3,5]. In particular, I would like to present the results showing that (i) tuning those strengths causes varieties of dynamic self-organization, and (ii) this includes a novel form of collective migration, snake-like dynamic assembly [5]. I will compare some of our results with experimental observations of a social cellular slime mold, Dictyosteloum discoideum, and its mutant, showing the traveling density wave formation [4]. I may also talk about how such dynamic self-organization can contribute to the accuracy of taxis behaviour in population [3,5].
[1] T. Hiraiwa et al., “Relevance of intracellular polarity to accuracy of eukaryotic chemotaxis” Physical Biology 11, 056002 (2014).
[2] T. Hiraiwa, A. Baba and T. Shibata, “Theoretical model for cell migration with gradient sensing and shape deformation” Euro. Phys. J. E 36, 32 (2013).
[3] T. Hiraiwa, “Two types of exclusion interactions for self-propelled objects and collective motion induced by their combination” Phys. Rev. E 99, 012614 (2019).
[4] M. Hayakawa, T. Hiraiwa, Y. Wada, H. Kuwayama and T. Shibata, “Polar pattern formation induced by contact following locomotion in a multicellular system” eLife 9: e53609 (2020).
[5] T. Hiraiwa, “Dynamic self-organization of idealized migrating cells by contact communication”, Phys. Rev. Lett. 125, 268104 (2020).

自己駆動量子多体系の相転移

Speaker: 足立 景亮 氏 (理研BDR)
Date : Oct. 8 (Thu), 10:30-12:00
Place : online

外部エネルギーを用いて自己駆動する粒子系はアクティブマターと呼ばれ、フロッキング転移、モティリティ誘起相分離、ミクロ相分離といった非平衡特有の相転移現象が生じることが知られている [1]。このような相転移の性質は、古典モデルのシミュレーションや人工粒子系の観察などにより、近年理解が進んできた。一方、量子系に目を向けると、冷却原子系に代表される人工量子系の制御技術の発展に伴い、エネルギー流入や散逸を伴う開放量子系の研究が盛んに進められている。特に、非エルミートハミルトニアンによる有効記述を用いて、特有の臨界現象やトポロジカル相などが議論されてきた [2]。

このような背景のもと我々は、量子多体系におけるアクティブマターモデルを初めて提案し、古典系での自己駆動力が量子系では非エルミート性として表現されることを明らかにした [3]。このモデルでは、自己駆動力に起因した量子相転移が生じ、フロッキング状態やモティリティ誘起相分離状態の量子対応物が現れることがわかった。さらに、量子相転移が古典確率過程モデルにおける動的相転移に対応することを見出し、この対応を相図の解釈に利用した。また、このモデルは散逸を導入した光格子中の冷却原子気体によって実現できると考えられ、その実装方法も提案した。

セミナーでは、アクティブマターで生じる相転移について概説したあと、古典アクティブマターモデルに基づいて量子モデルを構築する方法を説明し、量子モデルの数値シミュレーション結果について議論する。

[1] G. Gompper et al., J. Phys. Condens. Matter 32, 193001 (2020).
[2] Y. Ashida, Z. Gong, and M. Ueda, arXiv:2006.01837.
[3] K. Adachi, K. Takasan, and K. Kawaguchi, arXiv:2008.00996.

1次元強相関Bose系における粒子数揺らぎとFamily-Vicsekスケーリング

Speaker: 藤本 和也 氏 (名古屋大学)
Date : Aug. 6 (Thu), 10:30-12:00
Place : online

量子多体系でパラメータをクエンチさせて非平衡ダイナミクスを調べると、そこに動的スケーリングが現れる場合があり、その普遍性クラスが活発に研究されている。特にここ数年、冷却原子系の実験でスピン相関関数や運動量分布の動的スケーリングが実験的に観測されている[1,2,3]。このような背景のもと、我々は古典系で知られている揺らぐ界面の動的スケーリング、つまりFamily-Vicsek(FV)スケーリングに注目して、孤立量子多体系における界面荒さのFVスケーリングを理論的に研究した。具体的には1次元Bose-Hubbardモデルを用いて、古典系の揺らぐ流体力学とKardar-Parisi-Zhang方程式のアナロジーから界面高さ演算子を導入して、その界面荒さの時間発展をFVスケーリングの視点から調べた。本セミナーでは論文[4]の結果に基づいてその詳細を議論する。

[1] M. Prüfer et al., Nature 563, 217 (2018).
[2] S. Erne et al., Nature 563, 225 (2018).
[3] J. A. P. Glidden et al., arXiv:2006.01118.
[4] K. Fujimoto, R. Hamazaki, and Y. Kawaguchi, Phys. Rev. Lett. 124, 210604 (2020).

Perturbative Frictional Jamming and its relation to electron transport in disordered media.

Speaker: Prof. Mahesh Bandi (Okinawa Institute of Science and Technology)
Date : Jan. 28 (Tue), 13:30-15:00
Place : Room 413, Faculty of Science Bldg. 1

It is well known that external perturbations evolve a frictional granular pack jammed in an initial metastable configuration to an eventual stable one. Beneficial in achieving efficient packing, athermal perturbations can also cause catastrophic failure. Understanding pack response to perturbations naturally carries both fundamental and applied significance. In a related context, the power law pressure increase against packing fraction is considered one signature of the frictionless jamming transition. In contrast, independent studies reveal frictional jamming exhibits an initial exponential pressure rise before deviating towards the putative power law. The range of packing fraction values over which pressure rises exponentially is marked by a marginally stable solid (fragile state) sensitive to perturbations. In this talk, I report experiments on frictional granular pack pressure response to controlled perturbations in this fragile state. In particular, I will deduce an empirical result from the experimental data which establishes a close correspondence between this classical (frictional jamming) problem and a well known quantum effect for electron transport in amorphous semiconductors.

How the Moon got its rays

Speaker: Dr. Pinaki Chakraborty (Okinawa Institute of Science and Technology)
Date : Jan. 9 (Thu), 16:30-18:00
Place : Room 431, Faculty of Science Bldg. 1

Ray systems, or set of radial streaks that encircle an impact crater, became known shortly after the advent of the telescope, perhaps in 1647, when Johannes Hevelius published what might have been the first map of the Moon to show them. Although they were recognized as settled ejecta, that is, deposits of debris thrown out when a meteorite impacts the surface of a planetary body, their origin proved to be the sort of question for which competing theories abound to date. Motivated by observations of ray systems in planetary cratering, we study an analog system: granular cratering. In classical experiments of granular cratering, a ball dropped on an evened-out bed of grains ends up within a crater surrounded by a uniform blanket of ejecta. We show that the uniform blanket of ejecta changes to a ray system where the surface of the granular bed includes undulations, a factor that has not been addressed to date. By carrying out numerous experiments and computational simulations thereof, we ascertain that the number of rays in a ray system ∝ D/λ, where D is the diameter of the ball and λ is the wavelength of the undulations. Further, we show that the ejecta in a ray system originates in a narrow annulus of diameter D with the center at the site of impact. Our findings may help shed light on the enigmatic ray systems on the Moon and other planetary bodies.
This research was carried out in collaboration with Tapan Sabuwala, Christian Butcher, and Gustavo Gioia.

Common description of collective motions of running microtubules and C. elegans

Speaker: Dr. Ken H. Nagai (JAIST)
Date : Nov. 19 (Tue), 15:00-16:30
Place : Room 512, Faculty of Science Bldg. 1

Collective pattern formations of self-propelled particles are ubiquitous such as flocks of bird, fish school, and bacterial swarming, and it is expected that there exist the unified descriptions of the collective motions. Along this spirit, Vicsek et al. proposed a minimal multi-agent model, which is called the Vicsek model, in 1995. In the Vicsek model, each point particle which has its own moving direction is subject to temporally uncorrelated random directional noise. Each particle aligns to the neighbors, namely only short-range orientational interaction works. Using multi-agent models including the Vicsek model, global directional order in 2D and anomalous density fluctuations, which are called giant number fluctuations, in the ordered phase were predicted in collective motions of self-propelled particles with short-range directional interaction. Indeed, using E. coli elongated with an antibiotic, these two properties were observed in the real system [1].
The particles in the Vicsek model change their direction with no memory. However, there are various kinds of self-propelled particle that keeps its rotation rate for a long time and shows a circular trajectory such as an E. coli close to a wall and a mycoplasma on a glass plate. Using a multi-agent model like the Vicsek model, we elucidated the role of memory of rotation rate. We found that vortices filled the whole area only when the rotation rate of each particle was kept for a while [2].
It is known that microtubules driven by dyneins on a glass plate [3] and C. elegans [4] also have a long memory of rotation rate. Both the self-propelled particles formed many vortices, which are commonly well reproduced by the model in the upper paragraph. This indicates that there exists the unified description of self- propelled particles with memory of rotation rate and short-range directional interaction.
1. D. Nishiguchi, K. H. Nagai, et al., Phys. Rev. E (2017).
2. K. H. Nagai, et al., Phys. Rev. Lett. (2015).
3. Y. Sumino, et al., Nature (2012).
4. T. Sugi, et al., Nat. Commun. (2019).

神経幹細胞集団運動のキラリティとトポロジカル端状態

Speaker: 川口 喬吾 氏 (理化学研究所)
Date : Oct. 1 (Tue), 15:00-16:30
Place : 理学部1号館413室

生命現象の多くは比較的単純な要素の寄せ集めでモデル化できるが、その要素が自発的に動いているために平衡統計力学の枠組みから外れ、おもしろい現象が現れる。たとえば神経幹細胞の培養系はアクティブネマチックであり、向きが揃った状態では流れ場がないが、自発運動の結果の協同現象として、トポロジカル欠陥付近では流れ場が生じうる[1]。今回わたしたちは、ネマチック系で流れが生まれる新しい現象として、細胞の自発運動性とキラリティに依存するエッジカレントを見つけた。本講演では、アクティブネマチック系の簡単なレビューのあと、細胞のキラリティの定量実験と、スタンプ培養環境を使ったエッジカレントの観察を紹介し、数値シミュレーション結果と連続体モデルの解析について議論する。

[1] Kawaguchi, Kageyama, and Sano, Nature 545, 327 (2017).

細胞伸張とバイオマス成長の制御機構の解明

Speaker: 北原 裕己 氏 (パスツール研究所)
Date : Sep. 3 (Tue) 10:30-12:00
Place : 理学部1号館512室

細菌の細胞質内はタンパク質やRNAなどの高分子によって非常に混み合ってお り、その空間を細胞膜と細胞壁が閉じ込めています。細胞質内の乾燥マス密度 (以下、マス密度)は300 mg/mLにのぼり、この高密度環境が細胞内における 酵素反応などの生体内反応の効率に重要だと考えられています。このように細 胞のマス密度は細胞生理に重要な要素であるにも関わらず、live single-cell での測定が非常に困難であることから、その制御機構についてはほとんど明ら かになっていません。そこで、私たちは枯草菌の細胞をモデルとし、定量位相 顕微鏡の一種であるSpatial light interference microscopy(SLIM)を用い て、live single-cellのマス密度変化を定量しました。その結果、これまでに 予想されていた通り、多くの生育条件において細胞のマス密度は一定に維持さ れていましたが、細胞形態を変化させた場合に限って、細胞のマス密度は非常 にダイナミックに変化していることが分かりました。このことから、体積や表 面積などの細胞形態に関わる変数がマス密度と関係があると考え、現在はその 定式化に取り組んでいます。当日は、これらの定量結果に加え、生物学的な分 子機構にも触れながら、議論させていただきたいと思います。

Non-Equilibrium Statistical Physics in macroscopic dissipative systems.

Speaker: Prof. Antoine Naert (ENS-Lyon)
Date : Aug. 22 (Thu), 13:30-15:00
Place : 512, Faculty of Science Bldg. 1

Stochastic thermodynamics describes the evolution of a system in contact with a thermostat, when fluctuations dominate. This is implicitly assumed to occur most often for micron-scale systems.

We develop experiments at human-scale, i.e. from millimeters to dozen of centimeters. For instance one is based on the principle of Brownian motion, however with a granular gas as heat bath [1]. A core feature is the intrinsic dissipation of this thermostat, that needs to be compensated by a power supply. This bath, in such a Non-Equilibrium Steady State (NESS), seems definitely distinct from a drop of water !

However, our main outcome is that, for all criteria investigated, no qualitative departure could be evidenced by changing the scale or the dissipation : a heuristic use of the Gallavotti-Cohen Fluctuation Theorem and of the Fluctuation-Dissipation Theorem give an ‘effective temperatures’ kT_eff. consistent to within 10% [2] ; the heat flux between two such NESS baths follows the Fourier law on the average [3] ; and the fluctuations of heat flux follows the extended fluctuation theorem (XFT) proposed by Jarzynski et al. in 2004 [4,5].
We explain how kT_eff., defined and mesured in a NESS, exhibits typical value around 10^-6 J, considerably larger than those of molecular systems (kBT~10^-21 J). It however behaves as a unual equilibrium temperature !

At this point, we considered the analogy is validated, as far as stochastic thermodynamics concepts are concerned, and turned to further investigations. We checked that this approach holds in other kinds of NESS baths, such as an elastic plate in wave turbulence regime [6], or large Reynolds number turbulent flow.

We will discuss some woork in progress, and draw some perspectives for this convenient experimental benchtest, in the direction of the relations between energy and information, for instance, but not only.

Références :
[1] Naert A., EuroPhys. Lett. 97 2 (2012) 20010,
[2] J.-Y. Chastaing, J.-C. Géminard and A. Naert,
J. Stat. Mech. 073212 (2017)
[3] Lecomte C.-E. and Naert A., J. Stat. Mech., P11004 (2014),
[4] C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett., vol. 92, p. 230602, Jun 2004.
[5] M. Lamèche, A. Naert, to be published
[6] B. Apffel, A. Naert, S. Aumaître, J. Stat. Mech., vol. 2019, p. 013209, jan 2019

« 1 2 3 4 5 6 »

↑ PAGE TOP

- SunBoard -