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We investigate growing interfaces of topological-defect turbulence in the electroconvection of nematic

liquid crystals. The interfaces exhibit self-affine roughening characterized by both spatial and temporal

scaling laws of the Kardar-Parisi-Zhang theory in 1þ 1 dimensions. Moreover, we reveal that the

distribution and the two-point correlation of the interface fluctuations are universal ones governed by

the largest eigenvalue of random matrices. This provides quantitative experimental evidence of the

universality prescribing detailed information of scale-invariant fluctuations.
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Growth phenomena have been a subject of extensive
studies in physics and beyond, because of their ubiquity
in nature and their importance in both engineering and
fundamental science. Over recent decades, physicists
have found that growth phenomena due to local processes
typically lead to the formation of rough self-affine inter-
faces, as exemplified in paper wetting, burning fronts,
bacterial colonies, and material morphology, to name but
a few, and also in various numerical models [1]. Being
obviously irreversible, local growth processes provide a
challenging situation toward understanding the scale in-
variance and the consequent universality out of
equilibrium.

The roughness of interfaces is often quantified by their
width wðl; tÞ defined as the standard deviation of the inter-
face height hðx; tÞ over a length scale l at time t. The self-
affinity of interfaces then implies the following Family-
Vicsek scaling [2]:

wðl; tÞ � t�Fðlt�1=zÞ �
�
l� for l � l�
t� for l � l�;

(1)

with two characteristic exponents � and �, the dynamic

exponent z � �=�, and a crossover length scale l� � t1=z.
The simplest theory to describe such local growth pro-

cesses was proposed by Kardar, Parisi, and Zhang (KPZ)
[3] on the basis of the coarse-grained stochastic equation

@

@t
hðx; tÞ ¼ v0 þ �r2hþ �

2
ðrhÞ2 þ �ðx; tÞ (3)

with h�ðx; tÞi ¼ 0 and h�ðx; tÞ�ðx0; t0Þi ¼ D�ðx� x0Þ�ðt�
t0Þ. For 1þ 1 dimensions, the renormalization group ap-
proach provides exact values of the exponents at �KPZ ¼
1=2 and �KPZ ¼ 1=3 [1,3], which are universal as widely
confirmed in numerical models [1]. Moreover, the (1þ 1)-
dimensional KPZ class attracts growing interest thanks to
rigorous work on the asymptotic form of the fluctuations in
solvable models [4–6]. This opens up a new aspect in the
study of scale-invariant phenomena toward the universality
beyond the scaling laws.

In contrast with such remarkable progress in theory, the
situation in experiments has been quite different. A con-

siderable number of experiments have been performed on
various growth processes [1] and confirmed the ubiquity of
rough interfaces. Concerning the universality, however,
experimentally measured values of the exponents are
widely diverse and mostly far from the KPZ values for
both � and � [1]. To our knowledge, only two experiments
among dozens directly found the KPZ exponents: in colo-
nies of mutant bacteria [7] and in slow combustion of paper
[8]; a few other experiments showed indirect indications
[9,10]. One of the main difficulties shared by most experi-
ments, including the above two, is that one needs to repeat
a large number of experiments in the same controlled
conditions to accumulate sufficient statistics. In this
Letter, studying growing interfaces of turbulent liquid
crystals, we overcome this difficulty and report clear ex-
perimental evidence of not only the universal scaling laws
but also the universal fluctuations of the KPZ class through
critical comparisons with the wealth of theoretical
predictions.
The electroconvection occurs when an external voltage

is applied to a thin layer of nematic liquid crystal, trigger-
ing the Carr-Helfrich instability [11]. We focus on inter-
faces between two topologically different turbulent states
called the dynamic scattering modes 1 and 2 (DSM1 and
DSM2), which are observed with sufficiently large volt-
ages. The essential difference between them lies in the
density of topological defects called the disclinations.
Upon applying a voltage, we first observe the DSM1 state
with practically no defects in the director field, which lasts
until a disclination is finally created owing to the break-
down of surface anchoring [12]. This forms a DSM2
cluster composed of a large quantity of disclinations,
which are constantly elongated, split, and transported by
fluctuating turbulent flow around. While DSM2 may co-
exist with DSM1 in a regime of spatiotemporal intermit-
tency [13], for larger voltages we observe growing DSM2
clusters driven by the above-mentioned stochastic local
contamination processes.
Our experimental setup consists of a quasi-two-

dimensional sample cell, an optical microscope, a thermo-
controller, and an ultraviolet pulse laser (see Ref. [13] for
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detailed descriptions). The cell is made of two parallel
glass plates with transparent electrodes, which are
spaced by a polyester film of thickness 12 �m enclosing
a region of 16 mm� 16 mm for the convection. We
chose here the homeotropic alignment of liquid crystals
in order to work with isotropic DSM2 growth, which
is realized by coating N, N-dimethyl-N-octadecyl-3-
aminopropyltrimethoxysilyl chloride uniformly on the
electrodes using a spin coater. The cell is then filled with
N-(4-methoxybenzylidene)-4-butylaniline doped with
0.01 wt.% of tetra-n-butylammonium bromide. The cutoff
frequency of the conductive regime [11] is 850� 50 Hz.
The cell is maintained at a constant temperature 25:0 	C
with typical fluctuations in the order of 10�3 K. The con-
vection is observed through the transmitted light from
light-emitting diodes and recorded by a CCD camera.

For each run we apply a voltage of 26 Vat 250 Hz, which
is sufficiently larger than the DSM1-DSM2 threshold at
20.7 V. After waiting a few seconds, we shoot into the cell
two successive laser pulses of wavelength 355 nm and
energy 6 nJ to trigger a DSM2 nucleus [13]. Figure 1
displays typical growth of a DSM2 cluster. We repeat it
563 times to characterize the growth process precisely.

We define the local radius Rðx; tÞ along the circle which
denotes the statistically averaged shape of the droplets, as
sketched in Fig. 1(b). This measures the interfacial width

wðl; tÞ � h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih½Rðx; tÞ � hRil
2il
p i and the height-difference

correlation function Cðl; tÞ � h½Rðxþ l; tÞ � Rðx; tÞ
2i,
where h� � �il and h� � �i denote the average over a segment
of length l and all over the interface and ensembles,

respectively. Both wðl; tÞ and Cðl; tÞ1=2 are common quan-
tities for characterizing the roughness, for which the
Family-Vicsek scaling [Eq. (1)] is expected.

This is tested in Fig. 2. Raw data of wðl; tÞ and Cðl; tÞ1=2
measured at different times [Figs. 2(a) and 2(b)] grow
algebraically for short length scales l � l� and converge
to constants for l � l� in agreement with Eq. (1). The
power � of the algebraic regime measured in the last frame
t ¼ 28:4 s is found to be � ¼ 0:50ð5Þ. Here, the number in
the parentheses indicates the range of error in the last digit,
which is estimated both from the uncertainty in a single fit
and from the dependence on the fitting range. The found
value of � is in good agreement with the KPZ roughness
exponent �KPZ ¼ 1=2.
The temporal growth of the roughness is measured by

the overall width WðtÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih½Rðx; tÞ � hRi
2ip
and the pla-

teau level of the correlation function, CplðtÞ1=2, defined as
the mean value of Cðl; tÞ1=2 in the plateau region of
Fig. 2(b). Both quantities show a very clear power law t�

with � ¼ 0:336ð11Þ [Fig. 2(c)] in remarkable agreement
with the KPZ growth exponent �KPZ ¼ 1=3. Furthermore,
rescaling both axes in Fig. 2(a) with the KPZ exponents,
we confirm that our data of wðl; tÞ collapse reasonably well
onto a single curve [Fig. 2(d)]. A collapse of the same

quality is obtained for Cðl; tÞ1=2. We therefore safely con-
clude that the DSM2 interfacial growth belongs to the
(1þ 1)-dimensional KPZ class. In passing, this rules out
the logarithmic temporal scaling claimed by Escudero for
the droplet geometry [14].
Our statistically clean data motivate us to test further

predictions on the KPZ class beyond those for the scaling.
In this respect one of the most challenging benchmarks
may be the asymptotic distribution of height fluctuations,
calculated exactly for solvable models [5,6]. A general
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FIG. 1 (color online). Growing DSM2 cluster. (a) Images.
Indicated below is the elapsed time after the emission of laser
pulses. (b) Snapshots of the interfaces taken every 5 s in the
range 2 s � t � 27 s. The gray dashed circle shows the mean
radius of all the droplets at t ¼ 27 s. The coordinate x at this
time is defined along this circle.
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FIG. 2 (color online). Scaling of the width wðl; tÞ and the
height-difference correlation function Cðl; tÞ. (a, b) Raw data
of wðl; tÞ (a) and Cðl; tÞ1=2 (b) at different times t. The length
scale l is varied up to 2�hRi and �hRi, respectively. (c) Time
evolution of the overall widthWðtÞ and the plateau level CplðtÞ1=2
of the correlation function. (d) Collapse of the data in
(a) showing the Family-Vicsek scaling [Eq. (1)]. The dashed
lines are guides for the eyes showing the KPZ scaling.
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expression was proposed by Prähofer and Spohn [6], which
reads hðtÞ ’ v1tþ ðA2�t=2Þ1=3	 with A � D=2�, the
asymptotic growth rate v1, and a random variable 	
obeying the Tracy-Widom (TW) distribution [15], or the
(rescaled) largest eigenvalue distribution of large random
matrices. The random matrices are from the Gaussian
unitary and orthogonal ensemble (GUE and GOE) [16]
for curved and flat interfaces, respectively. This implies
an intriguing relation to the random matrix theory and
requires no fitting parameter provided that the values of
the two KPZ parameters � and A are measured. The
prediction was tested once for flat interfaces in the paper
combustion experiment [17] with an apparent agreement.
However, the authors had to shift and rescale the distribu-
tion function for want of the values of the KPZ parameters,
in which case the difference among the predicted distribu-
tions and the Gaussian one is unpronounced. They also had
to discard data subject to intermittent advance of burning
fronts due to quenched disorder [17]. Therefore, a quanti-
tative test of Prähofer and Spohn’s prediction has not been
carried out so far.

We first measure the value of � experimentally. For the
circular interfaces, � is given as the asymptotic radial
growth rate, which has a leading correction term as � ’
dhRi=dtþ avt

�2=3 for t ! 1 [18]. This relation is indeed
confirmed in Fig. 3(a) and yields a precise estimate at � ¼
35:40ð23Þ �m=s.

The parameter A can be determined, at least for flat
interfaces, from the amplitude of Cðl; tÞ and wðl; tÞ through
C ’ Al and w2 ’ Al=6 in the limit t ! 1 [18]. Figure 3(b)
shows Cðl; tÞ=l against l for different times t. A similar
series of plots is obtained for 6w2=l. The value of A can be
estimated from the plateau level or the local maximum of
these plots, but we find that these estimates increase slowly
with time and do not agree with each other (inset). This
allows us to have only a rough estimate A 
 10 �m for the
range of time we study.

Now we test Prähofer and Spohn’s prediction for the
circular interfaces:

RðtÞ ’ �tþ ðA2�t=2Þ1=3	GUE (4)

with a random variable 	GUE obeying the GUE TW dis-
tribution. We first compute the cumulant hRnic, for which
Eq. (3) implies hRnic ’ ðA2�=2Þn=3h	n

GUEictn=3 for n � 2.
Our data indeed show this power-law behavior in time
[Fig. 4(a)], though higher order cumulants are statistically
more demanding and hence provide less conclusive results.

We then calculate the skewness hR3ic=hR2i3=2c and the
kurtosis hR4ic=hR2i2c, which do not depend on the parame-
ter estimates. The result in Fig. 4(b) shows that both
amplitude ratios asymptotically converge to the values of
the GUE TW distribution, about 0.2241 for the skewness
and 0.09345 for the kurtosis [6], and clearly rules out the
GOE TW and Gaussian distributions. Conversely, if we
admit the GUE TW distribution, the amplitude of hR2ic
offers a precise estimate of A at 9:98ð7Þ �m, which is
consistent with the direct estimate obtained above and
hence used in the following.
Histograms of the local radius Rðx; tÞ are then made and

shown in Fig. 4(c) for two different times as functions of

q � ðR� �tÞ=ðA2�t=2Þ1=3, which corresponds to 	GUE if
Eq. (3) holds. The experimental distributions show remark-
able agreement with the GUE TW one without any fitting,
apart from a slight horizontal translation. Indeed, time
series of the difference between the nth order cumulants
of q and 	GUE [Fig. 4(d)] reveal that the second to fourth
order cumulants of q converge quickly to the GUE TW
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FIG. 3 (color online). Parameter estimation. (a) Growth rate
dhRi=dt averaged over 1.0 s against t�2=3. The y intercept of the
linear regression (dashed line) provides an estimate of �.
(b) Cðl; tÞ=l against l for different times t. Inset: nominal
estimates of A obtained from wðl; tÞ (blue bottom symbols)
and Cðl; tÞ (green top symbols) as functions of t (see text).
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values, while the first order one, i.e., the mean, algebrai-
cally approaches it with a power close to �1=3 (inset).
This is theoretically reasonable behavior which stems from
the existence of an additional constant term in Eq. (3).
Therefore, we conclude that the local radii of the DSM2
nuclei asymptotically obey the GUE TW distribution at
least up to the fourth order cumulants, confirming the
prediction of Prähofer and Spohn.

We also measure the two-point correlation function
C2ðl; tÞ � hRðxþ l; tÞRðx; tÞi � hRi2. Theory predicts that
C2ðl; tÞ is asymptotically described by the Airy2 process
A2ðtÞ or by the dynamics of the largest eigenvalue in
Dyson’s Brownian motion of GUE matrices [16] as

C2ðl; tÞ ’ ðA2�t=2Þ2=3g2ðuÞ with g2ðuÞ � hA2ðuþ
tÞA2ðtÞi and u � ðAl=2ÞðA2�t=2Þ�2=3 [19]. Our experi-
mental data confirm this with an algebraic finite-time
correction consistent with the power �1=3 (Fig. 5).

In comparison with past experimental studies showing
diverse scalings, one may wonder why the liquid crystal
turbulence exhibits such clear KPZ-class behavior. We
consider that the following three factors are essential.
(i) The growth of DSM2 results from strictly local pro-
cesses due to the turbulent flow on the interfaces and not
from inward or outward interactions of the cluster, which
could induce long-range effects and affect the universality.
(ii) The stochasticity of the process stems from intrinsic
turbulent fluctuations overwhelming quenched disorder.
(iii) Good controllability and fast response of the liquid
crystals allowed us to repeat hundreds of experiments in
the same conditions, leading to statistically reliable data.
The reproducibility of the presented results was confirmed
with different voltages and spatial resolutions with the
same quality of data (not shown).

In conclusion, measuring the growth of DSM2 nuclei in
the electroconvection, we have found the circular interface
roughening clearly characterized by the scaling laws of the
KPZ class in 1þ 1 dimensions. Moreover, we have shown
without fitting that the fluctuations of the cluster local
radius asymptotically obey the Tracy-Widom distribution

of the GUE random matrices and revealed the finite-time
effect. Together with the agreement in the two-point cor-
relation, our experimental results quantitatively confirm
the geometry-dependent universality of the (1þ 1)-
dimensional KPZ class prescribing detailed information
of the scale-invariant fluctuations. In this respect, inves-
tigations of flat interfaces in the same system are of out-
standing importance and are in progress.
We acknowledge enlightening discussions with H.

Chaté, M. Prähofer, T. Sasamoto, and H. Spohn. We also
thank M. Prähofer and F. Bornemann for providing us with
numerical values of the TW distributions and the covari-
ance of the Airy2 process. This work is partly supported by
JSPS and by MEXT (No. 18068005).
Note added in proof.—After submission of this Letter,

Sasamoto and Spohn reported an exact solution of the
(1þ 1)-dimensional KPZ equation [20], which offers a
clear theoretical ground of our experimental results.
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