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Stochastic motion of a point – known as Brownian motion – has many successful applications in science,
thanks to its scale invariance and consequent universal features such as Gaussian fluctuations. In contrast,
the stochastic motion of a line, though it is also scale-invariant and arises in nature as various types of
interface growth, is far less understood. The two major missing ingredients are: an experiment that allows a
quantitative comparison with theory and an analytic solution of the Kardar-Parisi-Zhang (KPZ) equation, a
prototypical equation for describing growing interfaces. Here we solve both problems, showing
unprecedented universality beyond the scaling laws. We investigate growing interfaces of liquid-crystal
turbulence and find not only universal scaling, but universal distributions of interface positions. They obey
the largest-eigenvalue distributions of random matrices and depend on whether the interface is curved or
flat, albeit universal in each case. Our exact solution of the KPZ equation provides theoretical explanations.

S
cale invariance, i.e., the absence of characteristic length and time scales, is a powerful concept in physics,
which has provided simple and unified descriptions of natural phenomena. Prototypical examples are
systems at equilibrium undergoing continuous phase transitions1,2. Ferromagnets and liquid-vapour sys-

tems, for example, become scale-invariant at the critical point because of the fractal like structure of spin
configuration and of liquid/vapour patches, respectively. These phenomena are then ruled by a set of macroscopic
laws without any specific scales, often manifested as power laws with universal characteristic exponents, despite
the very different microscopic ingredients. With ample experimental evidence and deep theoretical understand-
ing for systems at equilibrium1,2, this universality has been a central subject of statistical mechanics since the mid
20th century.

Scale invariance is not restricted to thermal equilibrium. Great efforts have also been put into scale-invariant
systems driven out of equilibrium, such as fully developed turbulence3. Here, we focus on growth phenomena4–6 as
one such nonequilibrium situation, which allows us to resolve very fine fluctuations both experimentally and
theoretically as reported below, and thereby to address the fundamental issue of universality behind scale
invariance. To start with an example, imagine a sheet of paper dipped to an ink suspension. One then observes
the paper being wetted by the ink, typically with a rough interface that becomes even rougher as time elapses.
Moreover, the interface looks scale-invariant as similar irregularities repeat at every scale. This can be quantified
by introducing the interface height h(x, t) and the width w(l, t), which is simply the standard deviation of h(x, t)
over a length scale l and thus measures the roughness of the interface. One then typically finds the following power
law called the Family-Vicsek scaling7:

w l,tð Þ*tbF lt{1=z
� �

*
la for l=l�,

lb for l?l�,

�
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with a scaling function F, two characteristic exponents a and b, the dynamic exponent z ; a/b, and a crossover
length scale l* , t1/z. Indeed, paper wetting4 and many other phenomena such as fluid flow in porous media8,
bacterial colony growth9, etc., as well as a large number of numerical models4–6, have confirmed the scaling law (1).
Moreover, numerical models have evidenced universality of the scaling exponents a and b, e.g., a 5 1/2 and b 5

1/3 for one-dimensional interfaces. This is theoretically well understood on the basis of a continuum equation
proposed by Kardar, Parisi and Zhang (KPZ)10,11 and constitutes the KPZ universality class4–6.

Nevertheless, the universality has been quite elusive in experiments. To our knowledge, experiments on
bacterial colony growth9 and on paper combustion12 are the only two that were able to show the KPZ exponents
directly. Otherwise a few indirect indications of the KPZ scaling were reported in fracture surfaces13,14, crystal
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facets15 and gene segregation during bacterial growth16, but an over-
whelming majority of investigations4–6 have reported values of a and
b inconsistent with the KPZ class. Major difficulties in the past
experiments presumably lie in the existence of quenched disorder
and long-ranged effective interactions, which are theoretically
known to affect the universality4–6,17. Besides, statistical analysis has
often been limited by rather moderate amount of available data
under controlled conditions, a problem shared also by the above
two experiments. Here, developing our previous work18, we over-
come all these difficulties and report a firm experimental observation
of growing interfaces, which reveals universality of not only the
scaling exponents but beyond, even in the distributions of shape
fluctuations.

Results
Experimental evidence. We study the convection of nematic liquid
crystal, confined in a thin container and driven by an electric field19,20,
and focus on the interface between two turbulent states, called
dynamic scattering modes 1 and 2 (DSM1 and DSM2)20,21. The
latter consists of a large quantity of topological defects and can be
created by nucleating a defect with a ultraviolet laser pulse. Whereas
the generated DSM2 nucleus may disappear or lead to spatio-
temporal intermittency at moderate applied voltages21 around
22 V, for larger voltages it grows constantly, forming a compact
cluster bordered by a moving rough interface (Fig.1a and
Supplementary Movie 1).

This DSM2 growth has many advantages in the context of growing
interfaces. It is a strictly local process and free from quenched dis-
order, because topological defects are simply elongated, split, and
transported around by the turbulent flow, which has only short-
ranged correlations in the DSM regimes and overwhelms cell hetero-
geneities. The experiment can be easily repeated under precisely
controlled conditions. Moreover, we can realise flat interfaces as well
(Fig.1b and Supplementary Movie 2), simply by shooting a line-
shaped laser pulse through a cylindrical lens, so that we can study
the geometry dependence of the interface fluctuations for the first
time in experiments. In the following we report results obtained from
955 and 1128 realisations of circular and flat interfaces, respectively.

To characterise the roughness of the observed interface, we define
the local height h(x, t) along the moving direction of the interface, e.g.
the local radius for the circular interface, as a function of the lateral
coordinate x (Fig.1). The interface width is then defined as

w l,tð Þ:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h x,tð Þ{ hh il
� �2
D E

l

r� 	
, where � � �h il denotes the average

over a segment of length l and � � �h i the average along the interface
and all experimental realisations. Figure 2 displays the results, which
confirm the Family-Vicsek scaling (1) in every aspect. The width
w(l, t) shows the power laws w , la for short lengths l = l* , t1/z

(Fig.2a,b) and w , tb for the largest l (Fig.2c), measured from the

overall width W tð Þ:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h x,tð Þ{ hh i½ �2

 �q

. In particular, these power
laws evidence the exponents of the KPZ universality class for

Figure 1 | Growing DSM2 cluster with a circular (a) and flat (b) interface. Binarised snapshots at successive times are shown with different colours.

Indicated in the colour bar is the elapsed time after the laser emission. The local height h(x, t) is defined in each case as a function of the lateral coordinate x

along the mean profile of the interface (a circle for a and a horizontal line for b). See also Supplementary Movies 1 and 2.

Figure 2 | Family-Vicsek scaling. a,b, Interface width w(l, t) against the length scale l at different times t for the circular (a) and flat (b) interfaces.

The four data correspond, from bottom to top, to t 5 2.0 s, 4.0 s, 12.0 s and 30.0 s for the panel a and to t 5 4.0 s, 10.0 s, 25.0 s and 60.0 s for the panel b.

The insets show the same data with the rescaled axes. c, Growth of the overall width W(t):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h x,tð Þ{ hh i½ �2

 �q

. The dashed lines are guides for the eyes

showing the exponent values of the KPZ class.
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one-dimensional interfaces, namely a 5 1/2 and b 5 1/3, regardless
of the cluster shape. This is crosschecked in the insets of Fig.2ab,
where we plot w9 ; w(l, t)t2b against l9 ; lt-1/z using the KPZ expo-
nents and confirm that the data in the main panels collapse onto a
single curve w9 5 F(l9) in agreement with equation (1). Therefore, we
conclude that the DSM2 interface growth belongs to the KPZ class,
demonstrating the robustness of the KPZ universality.

Now we investigate the detailed form of the scale-invariant fluc-
tuations. The Family-Vicsek scaling suggests that the height h is
composed of a deterministic linear growth term and a stochastic
t1/3 term:

h^v?tz(Ct)1=3x, ð2Þ

with two parameters v‘, C and the random amplitude x which cap-
tures the fluctuations of the growing interace. We measure the values
of the two parameters v‘ and C from the experimental data

(Supplementary Note 1) and make histograms of the rescaled height
x 5 (h 2 v‘t)/(Ct)1/3 in Fig.3a. The result shows, surprisingly, clearly
distinct distributions for the circular and flat interfaces (solid and
open symbols), each of them not centred nor symmetric. To confirm
we measure the second to fourth order cumulants of the height h,
defined as Æh2æc ; Ædh2æ, Æh3æc ; Ædh3æ and Æh4æc ; Ædh4æ 2 3Ædh2æ2 with

dh ; h 2 Æhæ, and plot the skewness h3h ic= h2h i3=2
c and the kurtosis

h4h ic= h2h i2c in Fig.3b. Indeed, they have asymptotic values signifi-
cantly different from zero unlike the Gaussian distribution, and dis-
tinct between the circular and flat interfaces.

In fact our experimental data in Fig.3a trace very precisely, without
fitting, well-known distributions from a completely different context,
namely the Tracy-Widom (TW) distributions of random matrix
theory22. There are a few variants of the TW distributions. The data
for the circular interfaces agree with the GUE TW distribution23,
which governs the largest eigenvalue distribution of complex

Figure 3 | Universal fluctuations. a, Histogram of the rescaled local height x ; (h 2 v‘t)/(Ct)1/3. The blue and red solid symbols show the histograms for

the circular interfaces at t 5 10 s and 30 s; the light blue and purple open symbols are for the flat interfaces at t 5 20 s and 60 s, respectively. The dashed

and dotted curves show the GUE and GOE TW distributions, respectively. Note that for the GOE TW distribution x is multiplied by 222/3 in view of

the theoretical prediction31. b, The skewness (circle) and the kurtosis (cross) of the distribution of the interface fluctuations for the circular (blue) and flat

(red) interfaces. The dashed and dotted lines indicate the values of the skewness and the kurtosis of the GUE and GOE TW distributions31. c, d, Differences

in the cumulants between the experimental data Æxnæc and the corresponding TW distributions xn
GUE


 �
c for the ciruclar interfaces (c) and xn

GOE


 �
c

for the flat interfaces (d). The insets show the same data for n 5 1 in logarithmic scales. The dashed lines are guides for the eyes with the slope 21/3.
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hermitian random matrices (see below for details). In contrast those
for the flat interfaces obey the real symmetric matrix counterpart, i.e.,
the GOE TW distribution24. The agreements are down to the scale
1025, apart from a slight horizontal translation.

To elucidate this apparent deviation of the first moment, we plot
in Fig.3cd the time series of the difference between the nth order
cumulants of the measured x and the theoretical values for the TW
distributions. In both cases, the second to fourth order cumulants
quickly converge to the corresponding TW values, whereas the first
order cumulant Æxæ, i.e. the mean, still has a significant deviation as
suggested in the histograms. However, this deviation decreases in
time, actually obeying a clear power law , t21/3 (the insets of
Fig.3c,d), and vanishes in the t R ‘ limit. To summarise, we have
found that the interface fluctuations of the circular and flat interfaces
precisely agree with the GUE and GOE TW distribution, respect-
ively, at least up to the fourth order cumulant, with the pronounced
finite-time effect proportional to t21/3 for the mean.

Theoretical accounts. Now we provide current theoretical
understanding based on the KPZ equation (see also Supplementary
Note 2 and a recent review25,26). First we illustrate how the TW
distributions arise in random matrix theory. Let us consider an
N 3 N complex hermitian matrix A with matrix elements Aij

satisfying Āij 5 Aij. The matrix A becomes random by drawing Aij

from a Gaussian distribution. More precisely, we assume that
the Aij’s are independent with mean zero, ÆAijæ 5 0, and variance
ÆjAijj2æ 5 N. This statistical weight can be written more compactly as
the Boltzmann factor Z{1

N exp { 1
2N TrA2

� 
with the normalizing

constant ZN, which defines the Gaussian unitary ensemble (GUE).
A has N real eigenvalues. Since A is random, so are the eigenvalues.
Concerning the largest eigenvalue lmax, one finds

lmax^2NzN1=3xGUE, ð3Þ

for large N. The random amplitude xGUE has the GUE TW
distribution23, which is shown by the left dashed line in Fig.3a. The
cumulative distribution function of xGUE can be expressed as the
determinant of an operator defined through the Airy kernel

K x,yð Þ~
Ð?

0
dlAi xzlð ÞAi yzlð Þ, where x and y range over the

real line and Ai is the standard Airy function. Then

Prob xGUEƒsð Þ~det 1{PsKPsð Þ, ð4Þ

where Ps is the projection onto [s, ‘). PsKPs has the kernel K(x, y) for
s # x, y and equals to 0 otherwise. The determinant in equation (4) is
simply the product of the eigenvalues of the operator 1 2 PsKPs. For
the Gaussian orthogonal ensemble (GOE), one follows the same
construction, only now A has to be real symmetric. The GOE TW
distribution is again derived from its largest eigenvalue as in equation
(3) with a determinant identity similar to equation (4)24 and is
indicated by the right dotted line in Fig.3a.

In their celebrated work10, Kardar, Parisi, and Zhang proposed
to model the interface growth through the stochastic evolution
equation

L
Lt

h x,tð Þ~ 1
2

l
L
Lx

h x,tð Þ
� �2

zn
L2

Lx2
h x,tð Þz

ffiffiffiffi
D
p

g x,tð Þ ð5Þ

with material dependent parameters l, n, D and white noise g(x, t)
representing the random nucleation events. In the flat case the initial
height would be simply h(x, 0) 50, whereas for the droplet one would
choose the parabola h(x, 0) 5 2(x/d)2 with small d and focus only on
the top part of the droplet, so that the interface may be described by a
single-valued height h(x, t). Studying behaviour of the equation
under rescaling, one concludes10,11 that the height fluctuations should
grow as t1/3 and the lateral correlation length as t2/3, i.e., a 5 1/2
and b 5 1/3 as already mentioned above. On the other side,

despite intense efforts, probability density distributions seemed to
be unaccessible so far.

Exploiting lattice approximations27 together with an intricate
asymptotic analysis, we have obtained an exact solution of equation
(5)28,29. It covers precisely the droplet growth of the experiment and
provides a formula for the cumulative distribution function of h(x, t).
The distribution function, described through the determinant of a
time-dependent operator, is found to have a structure comparable to
equation (4) and to converge to the TW distribution in the limit of
large t. This is consistent with our experimental result for the droplet
growth (Fig.3a–c) and provides a strong theoretical evidence of the
universality of scale-invariant fluctuations. From the exact solution
one can further compute how fast the long time limit is approached.
Indeed it turns out that the mean is the slowest mode and it
approaches the TW mean as t21/3, which precisely agrees with our
experimental observation in Fig.3c. For the flat case the exact solution
of equation (5) is yet to be accomplished34. But for certain discrete
models in the KPZ class, a mapping to a combinatorial problem has
allowed a detailed analysis and the GOE TW distribution has been
predicted30–33, as indeed demonstrated by our experiment (Fig.3d).

Discussion
It is remarkable that growing interfaces in a thin film have such
profound statistics for the shape fluctuations. In addition to the
unexpected link to the random matrix theory, it is rather counter-
intuitive that, while in the KPZ class the scaling exponents are always
the same, statistical properties of the height fluctuations do depend
on the initial curvature of the interface. This is manifested in the two
distinct but nevertheless universal height distributions, as clearly
shown by our experiment. This result, together with the accompany-
ing theory, provides strong evidence of the universality beyond
the scaling laws, which underlies scale-invariant phenomena out of
equilibrium.

Methods
Experimental setup and procedures. The experimental setup is outlined in
Supplementary Figure 1. A thin container of inner dimensions 16 mm 3 16 mm 3

12 mm is filled with liquid crystal N-(4-methoxybenzylidene)-4-butylaniline (MBBA)
and 0.01 wt.% of tetra-n-butylammonium bromide. The liquid crystal molecules,
initially aligned perpendicularly to the cell surfaces, strongly fluctuate when a
sufficiently large ac voltage is applied between them and the first turbulent state
DSM1 is reached. We then shoot 355 nm ultraviolet laser pulses to nucleate a
topological defect in the liquid crystal orientation21, which multiplies and forms the
second turbulent state DSM2. For the experiments presented here, we shot two
successive laser pulses of energy 6 nJ for the circular interfaces and 0.04 nJ/mm for the
flat ones. The experiments were performed at temperature 25uC under the applied
voltage 26 V at 250 Hz.
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